Natural Language Interfaces for Databases with Deep Learning: The Never-Ending Quest for Data Accessibility
暫譯: 深度學習的資料庫自然語言介面:不斷追求資料可及性

Katsogiannis-Meimarakis, George, Mitsopoulou, Anna, Xydas, Mike

  • 出版商: Springer
  • 出版日期: 2025-11-14
  • 售價: $7,840
  • 貴賓價: 9.5$7,448
  • 語言: 英文
  • 頁數: 196
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3032069041
  • ISBN-13: 9783032069047
  • 相關分類: Natural Language Processing
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book covers the main research areas that aim to bridge the world of databases and SQL with the world of natural language. It provides a comprehensive coverage of the most influential work in the field that takes advantage of deep learning. Enabling users to access databases using natural language has been a longstanding goal since the inception of relational databases, that despite continued efforts remains an open challenge. However, the advancement of neural networks has given new life to this area, inspiring a new wave of works in multiple directions.

Starting with an introduction on the history of NLIDBs and a brief neural primer on deep learning architectures frequently mentioned throughout the book, the initial chapters focus on the Text-to-SQL problem. There, an overview of the problem is given, followed by a general architecture of Text-to-SQL systems and a deeper analysis of specific systems. Additionally, the reverse process of explaining an SQL query (i.e., SQL-to-Text) is examined, along with open research problems and the currently available solutions. The book continues with the multi-turn Text-to-SQL problem, that enables users to make corrections or ask follow-up questions, outlining the underlying system architectures, and introducing key representative systems. To put everything into perspective the subsequent chapter takes a broader look at the more general areas of code understanding and generation that encapsulate the problems discussed in the previous chapters. Moving on, the focus shifts on generating NL explanations and summaries of data (i.e., the Data-to-Text problem), offering an overview of the problem and its challenges as well as an overall system architecture and specific Data-to-Text systems. Then, bringing Data-to-Text closer to NLIDBs, the book dives deeper into the Results-to-Text problem that focuses on how to express the result of a query in user-friendly natural language. Finally, the book concludes by offering insights into how all the discussed research areas and systems can be brought together to create an NLIDB, along with risk and challenges that must be considered in the process.

This book is intended for both researchers and practitioners interested in NLIDBs, regardless of their prior familiarity with the topic. Readers with experience in this area will benefit from a structured overview and categorization of existing systems, along with an in-depth analysis of benchmarks, persistent challenges, and open research questions. Conversely, newcomers can explore the landscape of neural NLIDBs through an accessible presentation of the relevant subfields and key advancements, without requiring any prior background knowledge.

商品描述(中文翻譯)

本書涵蓋了旨在橋接資料庫與 SQL 世界與自然語言世界的主要研究領域。它全面介紹了在此領域中最具影響力的工作,這些工作利用了深度學習。自關聯資料庫誕生以來,使使用者能夠使用自然語言訪問資料庫一直是一個長期目標,儘管持續努力,但仍然是一個未解的挑戰。然而,神經網絡的進步為這一領域注入了新的活力,激發了多個方向的新一波研究。

本書以自然語言介面資料庫(NLIDBs)的歷史介紹和簡要的深度學習架構神經基礎知識開始,初始章節專注於 Text-to-SQL 問題。在這裡,提供了該問題的概述,接著是 Text-to-SQL 系統的一般架構以及對特定系統的深入分析。此外,還探討了解釋 SQL 查詢的反向過程(即 SQL-to-Text),以及開放的研究問題和目前可用的解決方案。本書接著討論多輪 Text-to-SQL 問題,這使得使用者能夠進行修正或提出後續問題,概述了基礎系統架構,並介紹了關鍵的代表性系統。為了更全面地理解,隨後的章節更廣泛地探討了代碼理解和生成的更一般領域,這些領域涵蓋了前面章節中討論的問題。接下來,重點轉向生成自然語言解釋和數據摘要(即 Data-to-Text 問題),提供了該問題及其挑戰的概述,以及整體系統架構和特定的 Data-to-Text 系統。然後,將 Data-to-Text 更加貼近 NLIDBs,本書深入探討了 Results-to-Text 問題,專注於如何以使用者友好的自然語言表達查詢結果。最後,本書總結了如何將所有討論的研究領域和系統整合在一起以創建 NLIDB,並考慮在此過程中必須面對的風險和挑戰。

本書旨在為對 NLIDBs 感興趣的研究人員和實務工作者提供參考,無論他們對該主題的熟悉程度如何。對於有經驗的讀者,本書將提供現有系統的結構化概述和分類,以及基準、持續挑戰和開放研究問題的深入分析。相對地,新手可以通過對相關子領域和關鍵進展的易於理解的介紹,探索神經 NLIDBs 的全貌,而無需任何先前的背景知識。

作者簡介

George Katsogiannis-Meimarakis is a PhD student at the University of Grenoble Alpes and Athena Research Center. His research focuses on empowering data accessibility through AI-driven solutions. He has presented multiple tutorials on Text-to-SQL and NLIDBs at top-level conference and published papers on related topics. His work has been integrated in EU-funded projects focusing on NL Search, Query Explanations, and Dataset Discovery.

Anna Mitsopoulou is a PhD student at the Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, and a Research Associate at the Athena Research Center. Her research focuses on enabling database access through natural language. She has published papers in this field, and her work has been integrated into EU-funded and commercial projects on data accessibility.

Mike Xydas is a PhD student at the University of Athens, Department of Informatics and Telecommunications, and a Research Associate at the Athena Research Center. He specializes in Natural Language Interfaces to Databases, with a focus on user-friendly interpretation of query results and practical, real-world deployment. He has delivered tutorials on NLIDBs at top conferences, and his work has been implemented in EU-funded projects and commercial AI-powered data accessibility solutions.

Georgia Koutrika is a Research Director at the Athena Research Center in Greece. She held research positions at HP Labs, IBM Almaden, and Stanford University. Her work explores how artificial intelligence can transform data management, particularly through conversational interfaces and AI-driven data management techniques. She has published many scientific papers at major conferences and journals. She coordinates or participates in several Horizon Europe research projects on these topics.

作者簡介(中文翻譯)

喬治·卡佐基安尼斯-梅馬拉基斯是格勒諾布爾阿爾卑斯大學及雅典研究中心的博士生。他的研究專注於通過人工智慧驅動的解決方案來提升數據的可訪問性。他在頂級會議上發表了多個有關Text-to-SQL和NLIDBs的教程,並在相關主題上發表了論文。他的工作已整合進歐盟資助的專案,專注於自然語言搜尋、查詢解釋和數據集發現。 安娜·米佐普盧是雅典國立暨卡波迪斯特里亞大學資訊與電信系的博士生,並擔任雅典研究中心的研究助理。她的研究專注於通過自然語言實現數據庫訪問。她在這一領域發表了論文,並且她的工作已整合進歐盟資助及商業專案中,專注於數據可訪問性。 邁克·希達斯是雅典大學資訊與電信系的博士生,並擔任雅典研究中心的研究助理。他專注於數據庫的自然語言介面,特別是用戶友好的查詢結果解釋和實際的現實世界部署。他在頂級會議上提供了有關NLIDBs的教程,他的工作已在歐盟資助的專案和商業的人工智慧驅動數據可訪問性解決方案中實施。 喬治亞·庫特里卡是希臘雅典研究中心的研究主任。她曾在HP實驗室、IBM阿爾馬登和史丹佛大學擔任研究職位。她的工作探討了人工智慧如何改變數據管理,特別是通過對話介面和人工智慧驅動的數據管理技術。她在主要會議和期刊上發表了許多科學論文。她協調或參與了幾個關於這些主題的Horizon Europe研究專案。