The Roadmap to Renewable Energy: Integrating Science, Business, and AI for a Sustainable Future
暫譯: 可再生能源的藍圖:整合科學、商業與AI以實現可持續未來

Gupta, Disha, Soeder, Daniel J., Chichani, Aditya

  • 出版商: Springer
  • 出版日期: 2026-01-22
  • 售價: $7,970
  • 貴賓價: 9.8$7,810
  • 語言: 英文
  • 頁數: 270
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3032096081
  • ISBN-13: 9783032096081
  • 相關分類: Machine Learning管理與領導 Management-leadership
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The renewable energy sector is undergoing rapid transformation, driven by technological innovation, evolving regulations, and growing demand for sustainable energy solutions. While resources exist on individual aspects of renewable energy, few provide a comprehensive guide that integrates science, business strategy, and data-driven modeling in one cohesive resource. Roadmap to Renewable Energy: Integrating Science, Business, and AI is meant to fill this gap, offering a holistic approach for professionals, students, and policymakers navigating the evolving energy landscape. The book combines real-world examples, case studies, and practical applications to equip readers with the knowledge and strategies needed to plan, deploy, and manage renewable energy projects effectively. Readers will gain hands-on experience through accessible code notebooks, enabling them to explore predictive models, analyze data, and apply insights to real-world energy scenarios. AI-driven modeling is woven throughout, providing actionable insights for project forecasting, optimization, and strategic decision-making.

商品描述(中文翻譯)

可再生能源領域正在迅速轉型,這一變化受到技術創新、規範演變以及對可持續能源解決方案需求增長的驅動。雖然有關可再生能源的個別方面的資源存在,但很少有提供綜合指南的資料,能夠將科學、商業策略和數據驅動建模整合在一個連貫的資源中。《可再生能源路線圖:整合科學、商業與人工智慧》旨在填補這一空白,為專業人士、學生和政策制定者提供一種全面的方法,以應對不斷變化的能源格局。這本書結合了現實世界的例子、案例研究和實用應用,幫助讀者掌握有效規劃、部署和管理可再生能源項目所需的知識和策略。讀者將通過可訪問的代碼筆記本獲得實踐經驗,使他們能夠探索預測模型、分析數據並將見解應用於現實世界的能源情境。人工智慧驅動的建模貫穿始終,提供可行的見解以進行項目預測、優化和戰略決策。

作者簡介

Disha Gupta is a renewable energy expert who has led the development of utility-scale solar, wind, and battery storage projects across the United States. She holds a bachelor's degree in Earth Science from the University of Delhi, a master's in Geology and Geological Engineering from South Dakota School of Mines & Technology (SDSM&T), and an MBA. Disha began her career as a GIS analyst at Energiekontor US, advanced to wind energy projects at BayWa r.e. in California, and has contributed to renewable energy development with EDP Renewables North America. Recognized for her academic excellence in The Times of India, she was also featured in AP News and South Dakota Capitol Journal for her group research at SDSM&T. An AI enthusiast, she will begin a master's in computer science at Georgia Tech in Spring 2026 to further broaden her technical expertise.

Daniel J. Soeder has 45 years of experience as a research scientist and geologist working on issues related to energy and the environment. His background includes a decade of research on the geology of natural gas resources at the Gas Technology Institute in Chicago, followed by 18 years with the U.S. Geological Survey (USGS) coordinating hydrologic and geologic fieldwork at the proposed Yucca Mountain high level nuclear waste repository site in Nevada, and researching coastal hydrology, wetlands, water supply, and water contamination in the Mid- Atlantic. He transferred from the USGS to the U.S. Department of Energy (DOE) National Energy Technology Laboratory in Morgantown, West Virginia in 2009 where he spent eight years performing energy and environmental research on gas shale and other unconventional fossil energy resources. He took an early retirement from the government to direct the Energy Resources Initiative at the South Dakota School of Mines & Technology.
Aditya Chichani is a senior machine learning engineer at Walmart, with expertise in building production-grade ML models and software applications. At Walmart Search, he designs end-to-end ML solutions, leveraging deep knowledge in machine learning and information retrieval to improve attribute understanding and ranking, delivering accurate search results to millions of shoppers at the world's largest retailer. Previously, he developed scalable microservices for Barclaycard Germany and key clients, including Amazon. He holds a master's degree in Electrical Engineering and Computer Sciences (EECS) from UC Berkeley, specializing in Data Science. Alongside his industry contribution, Aditya has organized workshops and served on program committees at leading AI/ML conferences, including ACM SIGIR, IEEE ICDM, CIKM, and RecSys. He has received several honors, including Excellence Awards at Walmart and Barclays, and the prestigious Fung Excellence Scholarship at UC Berkeley.

作者簡介(中文翻譯)

Disha Gupta 是一位可再生能源專家,曾在美國領導公用事業規模的太陽能、風能和電池儲存項目的開發。她擁有德里大學的地球科學學士學位,南達科他州礦業與科技學院(SDSM&T)的地質學及地質工程碩士學位,以及工商管理碩士學位。Disha 的職業生涯始於 Energiekontor US 的 GIS 分析師,之後在加州的 BayWa r.e. 進一步參與風能項目,並在 EDP Renewables North America 為可再生能源的發展做出貢獻。她因在《印度時報》中的學術成就而受到認可,並因在 SDSM&T 的團隊研究而被 AP News 和南達科他州國會日報報導。作為一名人工智慧愛好者,她將於 2026 年春季在喬治亞理工學院攻讀計算機科學碩士學位,以進一步擴展她的技術專業知識。

Daniel J. Soeder 擁有 45 年的研究科學家和地質學家的經驗,專注於與能源和環境相關的議題。他的背景包括在芝加哥的天然氣技術研究所進行十年的天然氣資源地質研究,隨後在美國地質調查局(USGS)工作 18 年,協調內華達州提議的尤卡山高級核廢料儲存場的水文和地質實地工作,並研究中大西洋地區的沿海水文學、濕地、水資源和水污染。2009 年,他從 USGS 轉任美國能源部(DOE)位於西維吉尼亞州摩根敦的國家能源技術實驗室,在那裡花了八年時間進行有關氣體頁岩和其他非常規化石能源資源的能源和環境研究。他提前退休,負責南達科他州礦業與科技學院的能源資源倡議。

Aditya Chichani 是沃爾瑪的高級機器學習工程師,專長於構建生產級的機器學習模型和軟體應用。在沃爾瑪搜索部門,他設計端到端的機器學習解決方案,利用在機器學習和資訊檢索方面的深厚知識來改善屬性理解和排名,為全球最大的零售商的數百萬顧客提供準確的搜索結果。此前,他為巴克萊卡德德國及包括亞馬遜在內的主要客戶開發可擴展的微服務。他擁有加州大學伯克利分校的電機工程與計算機科學(EECS)碩士學位,專攻數據科學。除了在業界的貢獻外,Aditya 還組織了研討會並在多個領先的人工智慧/機器學習會議的程序委員會中任職,包括 ACM SIGIR、IEEE ICDM、CIKM 和 RecSys。他獲得了多項榮譽,包括沃爾瑪和巴克萊的卓越獎,以及加州大學伯克利分校的著名方卓越獎學金。