Social Internet of Things (Siot) and Machine Learning--Enhancing Interconnectivity and Intelligence
暫譯: 社交物聯網 (Siot) 與機器學習—增強互聯性與智能

Kumar, Rajeev, Moreira, Fernando

  • 出版商: Springer
  • 出版日期: 2026-01-03
  • 售價: $8,900
  • 貴賓價: 9.5$8,455
  • 語言: 英文
  • 頁數: 407
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3032101212
  • ISBN-13: 9783032101211
  • 相關分類: 物聯網 IoTMachine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book offers readers an innovative perspective on how intelligent networks can evolve beyond simple device-to-device communication, enabling social interaction, adaptive learning, and predictive intelligence across various domains. Interconnected systems that learn, adapt, and collaborate are transforming the way we experience technology. It highlights the practical advantages of integrating machine learning into socially structured networks of devices, opening the door to more brilliant, more responsive digital ecosystems.

A distinctive aspect of this work is its emphasis on convergence. Instead of viewing connectivity and intelligence as separate fields, it explores how devices can function as socially aware entities, capable of reasoning, decision-making, and autonomous interaction. This innovative approach demonstrates how combining social networking principles with machine learning leads to stronger interconnectivity, greater efficiency, and increased adaptability. From healthcare monitoring systems that personalise treatment to transportation networks that self-optimise traffic flows, this book showcases real-world use cases where these technologies converge to make a measurable impact.

This book's scope encompasses theoretical foundations, emerging frameworks, and practical solutions. It introduces new models that explain how connected systems can be designed for scalability, resilience, and ethical governance, while also presenting case studies illustrating practical implementations. By combining foundational knowledge with application-driven insights, the book offers readers a comprehensive guide and a practical toolkit for navigating this rapidly evolving field.

The intended audience includes academic researchers, graduate students, and professionals working in areas such as computer science, data science, artificial intelligence, IoT, and networked systems. Industry leaders, developers, and technology strategists will likewise benefit from its actionable insights on building and deploying intelligent, socially structured networks. Furthermore, policymakers and decision-makers will find valuable discussions on ethical, security, and governance challenges, which will aid them in framing strategies for responsible adoption.

商品描述(中文翻譯)

本書為讀者提供了一個創新的視角,探討智能網絡如何超越簡單的設備對設備通信,實現社交互動、自適應學習和預測智能在各個領域的應用。互聯系統能夠學習、適應和協作,正在改變我們體驗技術的方式。本書強調將機器學習整合進社會結構化設備網絡的實際優勢,為更智慧、更具反應能力的數位生態系統開啟了大門。

本書的一個獨特之處在於其對融合的強調。它不僅將連接性和智能視為分開的領域,而是探討設備如何作為具有社會意識的實體運作,具備推理、決策和自主互動的能力。這種創新的方法展示了社交網絡原則與機器學習相結合如何導致更強的互聯性、更高的效率和更大的適應性。從個性化治療的健康監測系統到自我優化交通流量的運輸網絡,本書展示了這些技術融合以產生可衡量影響的現實案例。

本書的範疇涵蓋理論基礎、新興框架和實用解決方案。它介紹了新的模型,解釋如何設計可擴展性、韌性和倫理治理的連接系統,同時呈現案例研究以說明實際實施。通過將基礎知識與應用驅動的見解相結合,本書為讀者提供了一本全面的指南和實用工具包,以便在這個快速發展的領域中導航。

本書的目標讀者包括學術研究者、研究生以及在計算機科學、數據科學、人工智能、物聯網和網絡系統等領域工作的專業人士。行業領袖、開發者和技術策略家同樣能從中獲益,獲得有關構建和部署智能社會結構網絡的可行見解。此外,政策制定者和決策者將發現有關倫理、安全和治理挑戰的寶貴討論,這將幫助他們制定負責任採用的策略。