Application of Machine Learning in Earth Sciences: A Practical Approach
暫譯: 機器學習在地球科學中的應用:實用方法
Vyas, Swapnil, Jawak, Shridhar D., Deb Burman, Pramit Kumar
- 出版商: Springer
- 出版日期: 2026-01-13
- 售價: $11,790
- 貴賓價: 9.5 折 $11,201
- 語言: 英文
- 頁數: 665
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 303211425X
- ISBN-13: 9783032114259
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book introduces the reader to applications of machine learning (ML) in Earth Sciences. In detail, it describes the basic application of machine learning algorithms and models and their potential in Earth Sciences. It discusses the use of several tools and software and the typical workflow for ML applications in Earth Sciences. This book provides a comparative analysis of how standard processes and ML algorithms work in several Earth Sciences applications. Case studies from the various fields of Earth Sciences are presented to illustrate how to apply ML and Deep Learning, these include regression, forecasting, time series analysis in Climate studies, classification methods using multi-spectral data clustering, and dimensionality reduction in classification. This book reviews ML/AI models, algorithms, and methods, analyse case studies, and examine methods of application of ML/AI techniques to specific areas of Earth Sciences. It aims to serve all professionals, and researchers, scientists alike in academics, industries, government, and beyond.
商品描述(中文翻譯)
本書介紹了機器學習(ML)在地球科學中的應用。詳細描述了機器學習演算法和模型的基本應用及其在地球科學中的潛力。討論了幾種工具和軟體的使用,以及地球科學中機器學習應用的典型工作流程。本書提供了標準流程和機器學習演算法在多個地球科學應用中的比較分析。通過來自不同地球科學領域的案例研究,展示了如何應用機器學習和深度學習,包括氣候研究中的回歸、預測、時間序列分析,使用多光譜數據聚類的分類方法,以及分類中的降維技術。本書回顧了機器學習/人工智慧(ML/AI)模型、演算法和方法,分析案例研究,並檢視將機器學習/人工智慧技術應用於地球科學特定領域的方法。旨在服務於所有專業人士、研究人員和科學家,包括學術界、產業、政府等各界。