Real time deforestation detection using ANN and Satellite images: The Amazon Rainforest study case (SpringerBriefs in Computer Science)

Thiago Nunes Kehl

商品描述

The foremost aim of the present study was the development of a tool to detect daily deforestation in the Amazon rainforest, using satellite images from the MODIS/TERRA sensor and Artificial Neural Networks. The developed tool provides parameterization of the configuration for the neural network training to enable us to select the best neural architecture to address the problem. The tool makes use of confusion matrices to determine the degree of success of the network. A spectrum-temporal analysis of the study area was done on 57 images from May 20 to July 15, 2003 using the trained neural network. The analysis enabled verification of quality of the implemented neural network classification and also aided in understanding the dynamics of deforestation in the Amazon rainforest, thereby highlighting the vast potential of neural networks for image classification. However, the complex task of detection of predatory actions at the beginning, i.e., generation of consistent alarms, instead of false alarms has not been solved yet. Thus, the present article provides a theoretical basis and elaboration of practical use of neural networks and satellite images to combat illegal deforestation.

商品描述(中文翻譯)

本研究的主要目的是開發一種工具,以利用MODIS/TERRA感測器的衛星影像和人工神經網絡來檢測亞馬遜雨林的每日森林砍伐。所開發的工具提供了神經網絡訓練配置的參數化,讓我們能夠選擇最佳的神經架構來解決這一問題。該工具利用混淆矩陣來確定網絡的成功程度。使用訓練好的神經網絡,對2003年5月20日至7月15日的57幅影像進行了研究區域的光譜時間分析。該分析使我們能夠驗證實施的神經網絡分類的質量,並有助於理解亞馬遜雨林中森林砍伐的動態,從而突顯了神經網絡在影像分類中的巨大潛力。然而,檢測早期掠奪行為的複雜任務,即生成一致的警報而非虛假警報,尚未得到解決。因此,本文提供了神經網絡和衛星影像在打擊非法森林砍伐中的理論基礎和實際應用的詳細說明。