Flexible and Generalized Uncertainty Optimization: Theory and Methods (Studies in Computational Intelligence)
暫譯: 靈活且一般化的不確定性優化:理論與方法(計算智慧研究)

Weldon A. Lodwick, Phantipa Thipwiwatpotjana

  • 出版商: Springer
  • 出版日期: 2017-01-25
  • 售價: $4,950
  • 貴賓價: 9.5$4,703
  • 語言: 英文
  • 頁數: 190
  • 裝訂: Hardcover
  • ISBN: 331951105X
  • ISBN-13: 9783319511054
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book presents the theory and methods of flexible and generalized uncertainty optimization. Particularly, it describes the theory of generalized uncertainty in the context of optimization modeling. The book starts with an  overview of flexible and generalized uncertainty optimization. It covers uncertainties that are both associated with lack of information and that more general than stochastic theory, where well-defined distributions are assumed. Starting from families of distributions that are enclosed by upper and lower functions, the book presents construction methods for obtaining flexible and generalized uncertainty input data that can be used in a flexible and generalized uncertainty optimization model. It then describes the development of such a model in detail. All in all, the book provides the readers with the necessary background to understand flexible and generalized uncertainty optimization and develop their own optimization model. 

商品描述(中文翻譯)

本書介紹了靈活與廣義不確定性優化的理論與方法。特別是,它在優化建模的背景下描述了廣義不確定性的理論。本書首先概述了靈活與廣義不確定性優化,涵蓋了與資訊不足相關的不確定性,以及比隨機理論更一般的不確定性,後者假設有明確的分佈。從由上限和下限函數包圍的分佈族開始,本書提出了獲取靈活與廣義不確定性輸入數據的構建方法,這些數據可用於靈活與廣義不確定性優化模型中。接著,詳細描述了此類模型的發展。總的來說,本書為讀者提供了理解靈活與廣義不確定性優化及開發自身優化模型所需的必要背景。

最後瀏覽商品 (1)