Information Geometry: Near Randomness and Near Independence
暫譯: 資訊幾何:近隨機性與近獨立性

Arwini, Khadiga, Dodson, C. T. J.

相關主題

商品描述

The main motivation for this book lies in the breadth of applications in which a statistical model is used to represent small departures from, for example, a Poisson process. Our approach uses information geometry to provide a c- mon context but we need only rather elementary material from di?erential geometry, information theory and mathematical statistics. Introductory s- tions serve together to help those interested from the applications side in making use of our methods and results. We have available Mathematica no- books to perform many of the computations for those who wish to pursue their own calculations or developments. Some 44 years ago, the second author ?rst encountered, at about the same time, di?erential geometry via relativity from Weyl's book 209] during - dergraduate studies and information theory from Tribus 200, 201] via spatial statistical processes while working on research projects at Wiggins Teape - searchandDevelopmentLtd-cf. theForewordin 196]and 170,47,58]. H- ing started work there as a student laboratory assistant in 1959, this research environment engendered a recognition of the importance of international c- laboration, and a lifelong research interest in randomness and near-Poisson statistical geometric processes, persisting at various rates through a career mainly involved with global di?erential geometry. From correspondence in the 1960s with Gabriel Kron 4, 124, 125] on his Diakoptics, and with Kazuo Kondo who in?uenced the post-war Japanese schools of di?erential geometry and supervised Shun-ichi Amari's doctorate 6], it was clear that both had a much wider remit than traditionally pursued elsewhere.

商品描述(中文翻譯)

本書的主要動機在於統計模型在各種應用中的廣泛性,例如用來表示與 Poisson 過程的小偏差。我們的方法使用資訊幾何提供一個共同的背景,但我們只需要來自微分幾何、資訊理論和數學統計的相當基礎的材料。入門部分的內容共同幫助那些對應用方面感興趣的人利用我們的方法和結果。我們提供 Mathematica 筆記本,以便那些希望進行自己計算或開發的人執行許多計算。大約 44 年前,第二作者在本科學習期間首次接觸到微分幾何,通過 Weyl 的書籍了解相對論,並通過 Tribus 的作品了解資訊理論,這些都是在 Wiggins Teape 研究與開發有限公司的研究項目中進行的 - 參見 196] 和 170,47,58] 的前言。自 1959 年作為學生實驗室助理開始在那裡工作以來,這個研究環境使我認識到國際合作的重要性,並對隨機性和近 Poisson 統計幾何過程產生了終身的研究興趣,這種興趣在我主要從事全球微分幾何的職業生涯中以不同的速度持續存在。從 1960 年代與 Gabriel Kron 4, 124, 125] 在他的 Diakoptics 上的通信,以及與影響戰後日本微分幾何學派的 Kazuo Kondo 的交流,他指導了 Shun-ichi Amari 的博士學位 6],可以清楚地看出他們的研究範疇遠比傳統上在其他地方追求的要廣泛得多。