Vladimir I. Arnold - Collected Works: Representations of Functions, Celestial Mechanics, and Kam Theory 1957-1965
暫譯: 弗拉基米爾·I·阿諾德 - 收集作品:函數表示、天體力學與卡姆理論 1957-1965
Arnold, Vladimir I., Givental, Alexander B., Khesin, Boris
- 出版商: Springer
- 出版日期: 2009-11-13
- 售價: $8,430
- 貴賓價: 9.5 折 $8,009
- 語言: 英文
- 頁數: 487
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 364201741X
- ISBN-13: 9783642017414
-
相關分類:
工程數學 Engineering-mathematics
海外代購書籍(需單獨結帳)
商品描述
Vladimir Igorevich Arnold is one of the most influential mathematicians of our time. V. I. Arnold launched several mathematical domains (such as modern geometric mechanics, symplectic topology, and topological fluid dynamics) and contributed, in a fundamental way, to the foundations and methods in many subjects, from ordinary differential equations and celestial mechanics to singularity theory and real algebraic geometry. Even a quick look at a partial list of notions named after Arnold already gives an overview of the variety of such theories and domains: KAM (Kolmogorov Arnold Moser) theory, The Arnold conjectures in symplectic topology, The Hilbert Arnold problem for the number of zeros of abelian integrals, Arnold s inequality, comparison, and complexification method in real algebraic geometry, Arnold Kolmogorov solution of Hilbert s 13th problem, Arnold s spectral sequence in singularity theory, Arnold diffusion, The Euler Poincare Arnold equations for geodesics on Lie groups, Arnold s stability criterion in hydrodynamics, ABC (Arnold Beltrami Childress) ?ows in ?uid dynamics, The Arnold Korkina dynamo, Arnold s cat map, The Arnold Liouville theorem in integrable systems, Arnold s continued fractions, Arnold s interpretation of the Maslov index, Arnold s relation in cohomology of braid groups, Arnold tongues in bifurcation theory, The Jordan Arnold normal forms for families of matrices, The Arnold invariants of plane curves. Arnold wrote some 700 papers, and many books, including 10 university textbooks. He is known for his lucid writing style, which combines mathematical rigour with physical and geometric intuition. Arnold s books on Ordinarydifferentialequations and Mathematical methodsofclassicalmechanics became mathematical bestsellers and integral parts of the mathematical education of students throughout the world."
商品描述(中文翻譯)
弗拉基米爾·伊戈列維奇·阿諾德(Vladimir Igorevich Arnold)是當代最具影響力的數學家之一。阿諾德發起了幾個數學領域(如現代幾何力學、辛拓撲學和拓撲流體動力學),並在許多主題的基礎和方法上做出了根本性的貢獻,從常微分方程和天體力學到奇異性理論和實代數幾何。即使是快速瀏覽一份以阿諾德命名的概念的部分清單,也能概覽這些理論和領域的多樣性:KAM(Kolmogorov Arnold Moser)理論、辛拓撲學中的阿諾德猜想、阿諾德對於阿貝爾積分零點數量的希爾伯特阿諾德問題、阿諾德不等式、實代數幾何中的比較和複雜化方法、阿諾德對希爾伯特第13個問題的科爾莫戈羅夫解、阿諾德在奇異性理論中的譜序列、阿諾德擴散、阿諾德在李群上測地線的歐拉-龐加萊方程、阿諾德在流體動力學中的穩定性標準、ABC(Arnold Beltrami Childress)流、阿諾德科爾基納發電機、阿諾德貓映射、阿諾德在可積系統中的李維爾定理、阿諾德的連分數、阿諾德對馬斯洛夫指數的詮釋、阿諾德在編織群的上同調中的關係、阿諾德在分岔理論中的舌頭、阿諾德對矩陣族的喬丹正規型、阿諾德平面曲線的不變量。阿諾德撰寫了約700篇論文和多本書籍,包括10本大學教科書。他以清晰的寫作風格而聞名,將數學的嚴謹性與物理和幾何的直覺相結合。阿諾德的《常微分方程》和《古典力學的數學方法》成為數學暢銷書,並成為全球學生數學教育的重要組成部分。