Conformal Invariance and Critical Phenomena
暫譯: 共形不變性與臨界現象

Henkel, Malte

  • 出版商: Springer
  • 出版日期: 2010-12-01
  • 售價: $2,370
  • 貴賓價: 9.5$2,252
  • 語言: 英文
  • 頁數: 418
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3642084664
  • ISBN-13: 9783642084669
  • 相關分類: 物理學 Physics
  • 海外代購書籍(需單獨結帳)

商品描述

Critical phenomena arise in a wide variety of physical systems. Classi- cal examples are the liquid-vapour critical point or the paramagnetic- ferromagnetic transition. Further examples include multicomponent fluids and alloys, superfluids, superconductors, polymers and fully developed tur- bulence and may even extend to the quark-gluon plasma and the early uni- verse as a whole. Early theoretical investigators tried to reduce the problem to a very small number of degrees of freedom, such as the van der Waals equation and mean field approximations, culminating in Landau's general theory of critical phenomena. Nowadays, it is understood that the common ground for all these phenomena lies in the presence of strong fluctuations of infinitely many coupled variables. This was made explicit first through the exact solution of the two-dimensional Ising model by Onsager. Systematic subsequent developments have been leading to the scaling theories of critical phenomena and the renormalization group which allow a precise description of the close neighborhood of the critical point, often in good agreement with experiments. In contrast to the general understanding a century ago, the presence of fluctuations on all length scales at a critical point is emphasized today. This can be briefly summarized by saying that at a critical point a system is scale invariant. In addition, conformal invaTiance permits also a non-uniform, local rescal- ing, provided only that angles remain unchanged.

商品描述(中文翻譯)

關鍵現象出現在各種物理系統中。經典的例子包括液體-蒸氣臨界點或順磁性-鐵磁性轉變。其他例子還包括多組分流體和合金、超流體、超導體、高分子以及完全發展的湍流,甚至可能擴展到夸克-膠子等離子體和整個早期宇宙。早期的理論研究者試圖將問題簡化為非常少的自由度,例如范德瓦爾斯方程和平均場近似,最終形成了蘭道的關鍵現象一般理論。如今,人們理解到這些現象的共同基礎在於無限多耦合變量的強波動的存在。這一點首先通過翁薩格對二維伊辛模型的精確解明確了出來。隨後的系統性發展導致了關鍵現象的尺度理論和重正化群,這些理論能夠精確描述臨界點附近的情況,通常與實驗結果相符。與一世紀前的普遍理解相比,今天強調在臨界點上所有長度尺度的波動的存在。這可以簡要總結為在臨界點上,系統是尺度不變的。此外,保形不變性也允許非均勻的局部重縮放,只要角度保持不變。