Symmetry Breaking
暫譯: 對稱破缺

Strocchi, Franco

  • 出版商: Springer
  • 出版日期: 2010-11-18
  • 售價: $2,690
  • 貴賓價: 9.5$2,556
  • 語言: 英文
  • 頁數: 216
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 364209273X
  • ISBN-13: 9783642092732
  • 相關分類: 物理學 Physics
  • 海外代購書籍(需單獨結帳)

商品描述

The main motivation for such lecture notes is the importance of the concept and mechanism of spontaneous symmetry breaking in modern theoretical physics and the relevance of a textbook exposition at the graduate student level beyond the oversimpli?ed (non-rigorous) treatments, often con?ned to speci?c models. One of the main points is to emphasize that the radical loss of symmetric behaviour requiresboth the existence of non-symmetric ground states and the in?nite extension of the system. The ?rst Part on SYMMETRY BREAKING IN CLASSICAL SYSTEMS is devoted to the mathematical understanding of spontaneous symmetry breaking on the basis of classical ?eld theory. The main points, which do not seem to appear in textbooks, are the following. i) ExistenceofdisjointHilbertspacesectors, stable under time e- lution in the set of solutions of the classical (non-linear) ?eld equations. Theyarethestrictanalogsofthedi?erentphasesofstatisticalmechanical systems and/or of the inequivalent representations of local ?eld algebras in quantum ?eld theory (QFT). As in QFT, such structures rely on the concepts of locality (or localization) and stability, (see Chap. 5), with emphasis on the physicalmotivations of the mathematicalconcepts; such structures have the physical meaning of disjoint physical worlds, disjoint phases etc. which can be associated to a given non-linear ?eld equation. The result of Theorem 5.2 may be regarded as a generalization of the criterium of stability to in?nite dimensional systems and it links such n stability to elliptic problems inR with non-trivial boundary conditions at in?nity (Appendix E).

商品描述(中文翻譯)

這些講義的主要動機在於自發對稱破缺的概念和機制在現代理論物理中的重要性,以及在研究生層級上超越過於簡化(不嚴謹)處理的教科書闡述的相關性,這些處理通常僅限於特定模型。主要的觀點之一是強調對稱行為的徹底喪失需要存在非對稱的基態以及系統的無限延展性。第一部分關於經典系統中的對稱破缺,專注於基於經典場論的自發對稱破缺的數學理解。主要的觀點,似乎在教科書中並不常見,包含以下幾點:i) 存在在經典(非線性)場方程的解集下,隨時間演化穩定的互不相交的希爾伯特空間區域。這些區域是統計力學系統不同相的嚴格類比,和量子場論(QFT)中局部場代數的非等價表示。與QFT類似,這些結構依賴於局部性(或定位)和穩定性的概念(見第5章),並強調數學概念的物理動機;這些結構具有互不相交的物理世界、互不相交的相等物理意義,可以與給定的非線性場方程相關聯。定理5.2的結果可以被視為穩定性標準對無限維系統的推廣,並將這種穩定性與在無窮遠處具有非平凡邊界條件的橢圓問題聯繫起來(附錄E)。