Parameter Identification for a Stochastic Partial Differential Equation in the Nonstationary Case
暫譯: 非穩態情況下隨機偏微分方程的參數識別

Uesseler, Nikolas

  • 出版商: Springer Spektrum
  • 出版日期: 2026-01-03
  • 售價: $4,150
  • 貴賓價: 9.5$3,943
  • 語言: 英文
  • 頁數: 76
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3658503432
  • ISBN-13: 9783658503437
  • 相關分類: 數值分析 Numerical-analysis
  • 無法訂購

相關主題

商品描述

This thesis investigates the mathematical problem of parameter identification in an equation arising from the study of how cells move on an embryo during its development. The motion of the cells can be modeled as particles evolving on a two-dimensional manifold according to a stochastic differential equation. The specific focus here is on estimating the drift parameter of this equation by observing the positions of a finite number of particles at different points in time. The general approach to approximate the solution of this ill-posed problem is to minimize a Tikhonov functional based on a regularized log-likelihood.
To assess the error of this approximation, tools from the theory of ill-posed problems are required. The thesis begins with a chronological review of fundamental results in nonlinear ill-posed problems, with the aim of motivating the assumptions underlying the main result as well as the techniques employed in its analysis from a historical perspective.

商品描述(中文翻譯)

本論文探討了一個數學問題,即在研究細胞在胚胎發育過程中如何移動時,從方程中識別參數。細胞的運動可以建模為根據隨機微分方程在二維流形上演變的粒子。這裡的具體重點是通過觀察在不同時間點上有限數量粒子的位置來估計該方程的漂移參數。解決這個不適定問題的一般方法是最小化基於正則化對數似然的Tikhonov泛函。

為了評估這個近似的誤差,需要使用不適定問題理論中的工具。論文首先對非線性不適定問題的基本結果進行了按時間順序的回顧,旨在從歷史的角度激發對主要結果的假設以及在其分析中所採用技術的理解。

作者簡介

Nikolas Uesseler is pursuing a PhD in applied mathematics at the University of Münster in the field of inverse problems and mathematical imaging in Prof. Benedikt Wirth's research group.

作者簡介(中文翻譯)

尼科拉斯·烏塞勒 正在明斯特大學攻讀應用數學博士學位,專注於逆問題和數學影像,隸屬於本尼迪克特·維爾特教授的研究團隊。

最後瀏覽商品 (1)