Scene Data Augmentation with Real and Virtual Data for Enhanced Ai-Driven Automated Driving Perception
暫譯: 利用真實與虛擬數據進行場景數據增強以提升AI驅動的自動駕駛感知
Gao, Kun
- 出版商: Springer Vieweg
- 出版日期: 2026-01-03
- 售價: $4,150
- 貴賓價: 9.8 折 $4,067
- 語言: 英文
- 頁數: 145
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3658507896
- ISBN-13: 9783658507893
-
相關分類:
自駕車
無法訂購
相關主題
商品描述
Automated driving requires robust and reliable perception systems, but rare and dangerous scenarios are often missing from real-world data. Kun Gao proposes an approach to scene data augmentation that combines real and virtual data to improve the performance of perception systems in complex environments. The goal is to reduce the limitations caused by insufficient training data for AI models. The method first analyzes important risk factors that influence perception performance. A scene data augmentation framework is then developed, integrating the realism of real data with the flexibility of virtual data. Using computer graphics and reinforcement learning, the approach generates a large number of challenging scenes and efficiently explores high-risk parameter combinations. The experimental results show that the proposed method improves robustness in rare and hazardous situations and increases the performance of AI-based object detection. The study also demonstrates that combining real and virtual data helps reduce the domain gap between them.
商品描述(中文翻譯)
自動駕駛需要穩健且可靠的感知系統,但現實世界的數據中往往缺少稀有且危險的場景。Kun Gao 提出了一種場景數據增強的方法,結合真實數據和虛擬數據,以改善感知系統在複雜環境中的性能。其目標是減少由於訓練數據不足而造成的 AI 模型限制。該方法首先分析影響感知性能的重要風險因素。接著,開發了一個場景數據增強框架,將真實數據的真實性與虛擬數據的靈活性相結合。通過計算機圖形學和強化學習,該方法生成大量具有挑戰性的場景,並有效探索高風險參數組合。實驗結果顯示,所提出的方法在稀有和危險情況下提高了穩健性,並增強了基於 AI 的物體檢測性能。該研究還表明,結合真實數據和虛擬數據有助於減少它們之間的領域差距。
作者簡介
Kun Gao is a research assistant at the Institute for Automotive Engineering Stuttgart (IFS) at the University of Stuttgart, Germany, where he also earned his doctorate. His research focuses on AI-based perception systems for automated driving.
作者簡介(中文翻譯)
高昆是德國斯圖加特大學汽車工程研究所(IFS)的研究助理,他也在該所獲得博士學位。他的研究專注於基於人工智慧的自動駕駛感知系統。