Introduction to Evolutionary Computing (Hardcover)
暫譯: 進化計算導論 (精裝版)
A.E. Eiben, J.E. Smith
- 出版商: Springer
- 出版日期: 2015-07-10
- 售價: $2,360
- 貴賓價: 9.5 折 $2,242
- 語言: 英文
- 頁數: 287
- 裝訂: Hardcover
- ISBN: 3662448734
- ISBN-13: 9783662448731
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,300Programming: Principles and Practice Using C++ (Paperback) -
程式設計師的自我修養-連結、載入、程式庫$580$493 -
Introduction to Algorithms, 3/e (Hardcover)$1,750$1,715 -
Digital Systems: Principles and Applications, 11/e (IE-Paperback)$1,350$1,323 -
$1,425Natural Language Annotation for Machine Learning (Paperback) -
機器學習$648$616 -
Effective C++ : 改善程序與設計的 55個具體做法, 3/e (簡體中文版) (Effective C++ : 55 Specific Ways to Improve Your Programs and Designs, 3/e)$534$507 -
優化 C++|提高程式效能的有效技術 (Optimized C++: Proven Techniques for Heightened Performance)$680$537 -
Cryptography and Network Security: Principles and Practice, 7/e (IE-Paperback)$1,350$1,323 -
$199批調度與網絡問題的組合算法 (Combinatorial algorithms for batch scheduling and network problems) -
$570密碼編碼學與網絡安全:原理與實踐, 7/e -
$352C++ 模板元編程實戰 : 一個深度學習框架的初步實現 -
$673軟件調試 第2版 捲1:硬件基礎 -
世界第一簡單機器學習$320$272 -
我 Rust 我驕傲:生來高人一等的快速優雅語言$880$695 -
Operating System Concepts, 10/e (IE-Paperback)$1,680$1,646 -
動手做深度強化學習 (Deep Reinforcement Learning Hands-On)$690$538 -
零基礎入門的機器學習圖鑑:2大類機器學習 X 17種演算法 X Python 基礎教學,讓你輕鬆學以致用$450$405 -
深度強化式學習 (Deep Reinforcement Learning in Action)$1,000$790 -
最新 Excel VBA 基礎必修課:程式設計、專題與數據應用的最佳訓練教材 (適用Excel 2021~2013)$520$442 -
Office 2021 高效實用範例必修 16課 (附500分鐘影音教學/範例檔)$450$383 -
看圖學 Python + Excel 辦公室自動化程式設計$480$432 -
Excel 2021 範例教本-使用AI提升工作效率$500$450 -
Python 初學特訓班:從快速入門、主流應用到 AI 全面實戰, 6/e (附超過500分鐘影音教學/範例程式)$490$368 -
AI 時代的計算機概論 (2026最新版)$620$490
商品描述
The overall structure of this new edition is three-tier: Part I presents the basics, Part II is concerned with methodological issues, and Part III discusses advanced topics. In the second edition the authors have reorganized the material to focus on problems, how to represent them, and then how to choose and design algorithms for different representations. They also added a chapter on problems, reflecting the overall book focus on problem-solvers, a chapter on parameter tuning, which they combined with the parameter control and "how-to" chapters into a methodological part, and finally a chapter on evolutionary robotics with an outlook on possible exciting developments in this field.
The book is suitable for undergraduate and graduate courses in artificial intelligence and computational intelligence, and for self-study by practitioners and researchers engaged with all aspects of bioinspired design and optimization.
商品描述(中文翻譯)
這一新版的整體結構為三層級:第一部分介紹基礎知識,第二部分關注方法論問題,第三部分討論進階主題。在第二版中,作者重新組織了材料,專注於問題、如何表示這些問題,然後如何為不同的表示選擇和設計演算法。他們還新增了一章關於問題,反映了整本書對於問題解決者的整體重點,新增了一章關於參數調整,並將其與參數控制和「如何做」的章節合併成一個方法論部分,最後還有一章關於進化機器人,展望了該領域可能的激動人心的發展。
本書適合用於人工智慧和計算智慧的本科及研究生課程,並適合從事生物啟發設計和優化各方面的實務工作者和研究人員自學。
