Quantal Density Functional Theory
暫譯: 量子密度泛函理論

Viraht Sahni

  • 出版商: Springer
  • 出版日期: 2018-06-12
  • 售價: $4,490
  • 貴賓價: 9.5$4,266
  • 語言: 英文
  • 頁數: 436
  • 裝訂: Paperback
  • ISBN: 3662570394
  • ISBN-13: 9783662570395
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book is on quantal density functional theory (QDFT) which is a time-dependent local effective potential theory of the electronic structure of matter.  The time-independent QDFT constitutes a special case.  The 2nd edition describes the further development of the theory, and extends it to include the presence of an external magnetostatic field.  The theory is based on the ‘quantal Newtonian’ second and first laws for the individual electron.  These laws are in terms of ‘classical’ fields that pervade all space, and their quantal sources.  The fields are separately representative of the electron correlations that must be accounted for in local potential theory.  Recent developments show that irrespective of the type of external field the electrons are subject to, the only correlations beyond those due to the Pauli exclusion principle and Coulomb repulsion that need be considered are solely of the correlation-kinetic effects.  Foundational to QDFT, the book describes Schrödinger theory from the new perspective of the single electron in terms of the ‘quantal Newtonian’ laws.  Hohenberg-Kohn density functional theory (DFT), new understandings of the theory and its extension to the presence of an external uniform magnetostatic field are described.  The physical interpretation via QDFT, in terms of electron correlations, of Kohn-Sham DFT, approximations to it and Slater theory are provided.

商品描述(中文翻譯)

這本書探討量子密度泛函理論(QDFT),這是一種時間依賴的局部有效勢能理論,用於描述物質的電子結構。時間獨立的QDFT構成了一個特例。第二版描述了該理論的進一步發展,並擴展到包括外部靜磁場的存在。該理論基於「量子牛頓」的第二和第一運動定律,針對單個電子進行描述。這些定律是以「經典」場為基礎,這些場遍佈整個空間,並且有其量子來源。這些場分別代表了在局部勢能理論中必須考慮的電子相關性。最近的發展顯示,無論電子所受的外部場類型如何,唯一需要考慮的超出泡利排斥原理和庫倫排斥所造成的相關性,僅僅是相關-動能效應。作為QDFT的基礎,本書從「量子牛頓」定律的新視角描述了薛丁格理論。書中還描述了霍恩伯格-科恩密度泛函理論(DFT)、對該理論的新理解以及其擴展至外部均勻靜磁場的情況。通過QDFT對電子相關性的物理詮釋,提供了對Kohn-Sham DFT、其近似及斯萊特理論的理解。

最後瀏覽商品 (20)