Large Aperture Array Radar Systems for Automotive Applications

Schwartau, Fabian

  • 出版商: Cuvillier
  • 出版日期: 2021-10-18
  • 售價: $2,130
  • 貴賓價: 9.5$2,024
  • 語言: 英文
  • 頁數: 144
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3736975074
  • ISBN-13: 9783736975071
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

商品描述

The automotive industry is pushing towards highly assisted and even autonomous driving cars. To gather a more precise and reliable representation of the car's surroundings, the sensors and the signal processing are improving over time and are a subject to continuous research. One essential sensor is the radar, which is robust and reliable even in harsh environmental conditions. The primary downside of a radar is its low resolution compared to lidar or camera-based systems. To mitigate these drawbacks the resolution of radar systems has to be improved. The bandwidth has to be increased to improve the range resolution, and the aperture has to be increased to improve the angular resolution. Primarily caused by the automotive industry, fully integrated radar on chip solutions are now available and allow the construction of more complex radar systems. These radar on chip devices lay the foundation for radars that fulfill the requirements of increased resolution for future systems. Although this work is focused automotive applications, most ideas, concepts, and calculations are also applicable to other fields. Similar systems may be used in the security sector, quality control in industrial processes, or gesture detection, to name a few examples. This thesis shows the development of a conceptual future radar system for automotive applications. The focus is on providing a large antenna aperture to achieve the required high angular resolution. Two genetic algorithms are developed to optimize the antenna array for a good side lobe level while providing high angular resolution. Two demonstrators are built to implement certain aspects of the proposed radar system and prove the general concept viable. The first demonstrator features a large aperture with a limited side lobe level and is using a modular approach. The modules are synchronized with a radio over fiber system. The second demonstrator uses the previously proposed antenna array, which is implemented with a synthetic a