Symplectic Methods in Harmonic Analysis and in Mathematical Physics
暫譯: 哈密頓分析與數學物理中的辛方法
de Gosson, Maurice A.
- 出版商: Springer
- 出版日期: 2011-07-30
- 售價: $4,020
- 貴賓價: 9.5 折 $3,819
- 語言: 英文
- 頁數: 338
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3764399910
- ISBN-13: 9783764399917
-
相關分類:
工程數學 Engineering-mathematics
海外代購書籍(需單獨結帳)
商品描述
The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin's global theory of pseudo-differential operators, and Feichtinger's theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space where the main role is played by "Bopp operators" (also called "Landau operators" in the literature) is introduced and studied. This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger's modulation spaces are key actors.
This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic.
A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list ofreferences.
商品描述(中文翻譯)
本書的目的是對諧波分析中的各種主題進行嚴謹且完整的探討,特別強調在時間-頻率文獻中經常被忽視或低估的辛不變性質。所涉及的主題包括(但不限於)Wigner 變換的理論、從辛拓撲的角度看不確定性原理、Weyl 演算及其辛協變性、Shubin 的偽微分算子全球理論,以及 Feichtinger 的調製空間理論。書中提供了幾個與時間-頻率分析和量子力學相關的應用,其中許多與當前的研究相符。例如,介紹並研究了一種在相空間上的非標準偽微分演算,其中「Bopp 算子」(在文獻中也稱為「Landau 算子」)扮演主要角色。這種演算與 Landau 問題以及 Flato 和 Sternheimer 的變形量子化理論密切相關,並提供了一個簡單的偽微分表述,其中 Feichtinger 的調製空間是關鍵角色。
本書主要針對諧波分析(廣義上)領域的學生或研究人員,以及在量子力學中工作的數學物理學家。時間-頻率分析的研究人員也可以從中獲益,為該主題的現有文獻提供有價值的補充。
本書假設讀者對傅立葉分析(廣義上)和初步的泛函分析(例如,分佈的基本理論)有一定的熟悉度。否則,本書在很大程度上是自足的,並包含廣泛的參考文獻列表。