Feature Extraction in Face Recognition (Paperback)
暫譯: 臉部識別中的特徵提取 (平裝本)
David Masip
- 出版商: VDM Verlag
- 出版日期: 2008-04-02
- 售價: $2,800
- 貴賓價: 9.5 折 $2,660
- 語言: 英文
- 頁數: 184
- 裝訂: Paperback
- ISBN: 3836472953
- ISBN-13: 9783836472951
-
相關分類:
影像辨識 Image-recognition
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
Microsoft Office SharePoint Server 2007 新一代企業 Web 解決方案(第一集)$690$545 -
Handbook of Face Recognition$4,470$4,247 -
Illustrator CS3 玩美插畫 88 例$580$458 -
Illustrator 點子爆米花$580$493 -
C++ Primer, 4/e (中文版)$990$891 -
Visual Basic 2005 資料庫程式設計暨進銷存會計系統實作$680$537 -
Embedded Linux 開發實務徹底研究 (Embedded Linux Primer: A Practical Real-World Approach)$720$612 -
Learning Python, 3/e$1,470$1,397 -
管理者的數字力─學會分析與解讀公司的經營數據$450$351 -
經理人提升效率的 Excel 函數與巨集技巧$450$351 -
一定做得到!Photoshop 相片編修 100 技$480$408 -
Microsoft ASP.NET 3.5 最佳實務講座$680$537 -
Visual C++ 數位影像處理技術大全$620$490 -
Windows Mobile 6 應用與程式開發$590$466 -
MIS 網路管理的工具箱$450$351 -
程式之美-微軟技術面試心得$490$387 -
OCUP/UML 初級認證攻略(OMG Certified UML Professional)$650$514 -
讓事情發生─專案管理之美學‧第二版 (Making Things Happen: Mastering Project Management, 2/e)$580$458 -
Flash Creative Workshop 達人的創意工房 (Flash creative workshop)$550$435 -
給設計師的 DM 型錄設計典─35 套 × 280 種 Photoshop + Illustrator 設計與技術點子$620$484 -
T-SQL 問題解決實戰$580$493 -
C++ 編程規範 (C++ Coding Standards: 101 Rules, Guidelines, and Best Practices)$580$493 -
Google API 開發詳解-Google Maps 與 Google Earth 雙劍合壁$580$458 -
微軟的秘密-Windows 神秘事件大解碼$420$332 -
3D Face Modeling, Analysis and Recognition (Hardcover)$3,980$3,781
商品描述
As technology evolves, we develop new devices equipped with embedded cameras. An important application using this technology is face classification, usually applied to: surveillance, biometric verification or gesture recognition in user-friendly interfaces. Traditionally, images are treated as high dimensional vectors with the pixel values. Feature extraction is used to reduce this dimensionality, learning invariant discriminant characteristics that improve the posterior classification on the face subspace. The first part of this book introduces the classifier combination methods to derive a new family of feature extraction techniques making no specific statistical assumptions on the data to classify. Psychological studies suggest that humans give a lot of importance to external features (hair, forehead and lateral zone). In the second part of this book we introduce a top-down fragment-based framework to model the external information of face images, solving the lack of alignment of the external regions and the extreme diversity among subjects. We conclude with some methods to combine internal and external features, improving the face classification results.
商品描述(中文翻譯)
隨著科技的進步,我們開發出配備嵌入式相機的新裝置。這項技術的一個重要應用是臉部分類,通常應用於:監控、生物識別驗證或用戶友好的介面中的手勢識別。傳統上,圖像被視為具有高維度的向量,包含像素值。特徵提取用於降低這一維度,學習不變的判別特徵,以改善臉部子空間上的後驗分類。本書的第一部分介紹了分類器組合方法,以推導出一系列新的特徵提取技術,這些技術對於要分類的數據不做特定的統計假設。心理學研究表明,人類非常重視外部特徵(如頭髮、額頭和側面區域)。在本書的第二部分,我們介紹了一種自上而下的基於片段的框架,以建模臉部圖像的外部信息,解決外部區域缺乏對齊和受試者之間極端多樣性的問題。我們最後總結了一些方法,以結合內部和外部特徵,改善臉部分類的結果。
