最新機器學習的教科書, 2/e
伊藤真 著
- 出版商: 深智
- 出版日期: 2024-07-19
- 定價: $780
- 售價: 7.9 折 $616
- 語言: 繁體中文
- 頁數: 384
- ISBN: 6267383881
- ISBN-13: 9786267383889
-
相關分類:
Machine Learning
立即出貨 (庫存 < 10)
買這商品的人也買了...
-
NumPy 高速運算徹底解說 - 六行寫一隻程式?你真懂深度學習?手工算給你看!$750$638 -
機器學習的數學基礎 : AI、深度學習打底必讀$580$458 -
Python 機器學習 (上), 3/e (Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 3/e)$620$484 -
Python 機器學習 (下), 3/e (Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 3/e)$520$406 -
從來沒有這麼明白過:TensorFlow 上車就學會 (書況差限門市銷售))$690$545 -
機器學習的統計基礎 : 深度學習背後的核心技術$680$537 -
Python 資料科學自學聖經:不只是建模!用實戰帶你預測趨勢、找出問題與發現價值(附關鍵影音教學、範例檔)$580$458 -
最佳能效晶片平台 - ARM64 架構師高度之程式開發$980$774 -
白話機器學習$780$616 -
機器學習的公式推導和程式實作$580$458 -
LLM 的瑞士刀 - 用 LangChain 極速開發可擴充大型應用程式$880$695 -
AI 時代 Math 元年 - 用 Python 全精通統計及機率 (黑白印刷)$1,200$948 -
Illustrator 跨世代不敗經典:242個掌握圖文設計的基本技巧與實踐 (2024版)$650$507 -
30天挑戰精通 PowerShell【第四版】:Windows、Linux 和 macOS 適用 (Learn PowerShell in a Month of Lunches: Covers Windows, Linux, and macOS, 4/e)$760$593 -
前端測試指南:策略與實踐$650$507 -
一週學會 Google Analytics 4|迅速打下分析基礎$690$545 -
人手一本的資安健診實作課:不是專家也能自己動手做!(Win10 / Win11適用)【暢銷回饋版】$560$437 -
AI 生成影音創作:超好用的文案、圖像、影片、聲音實戰技 (附影音教學)$480$379 -
深度學習 -- 最佳入門邁向 AI 專題實戰, 2/e$1,200$948 -
台灣之光物件辨識 - 最新 YOLO 原理精讀+實戰$800$632 -
遞迴演算法大師親授面試心法:Python 與 JavaScript 解題全攻略 (The Recursive Book of Recursion)$680$530 -
建構機器學習系統實踐指南$620$490 -
聰明提問 AI 的技巧與實例:ChatGPT、Copilot、AgentGPT、AI繪圖,一次滿足$650$507 -
精確掌握 AI 大趨勢!深度學習技術解密:日本 AI 神人,帶你正確學會從機器學習到生成式 AI 的核心基礎$630$498 -
全格局使用 PyTorch - 深度學習和圖神經網路 - 基礎篇, 2/e$880$695
相關主題
商品描述
輕鬆簡單的好書,讓你從入門到高手,掌握機器學習及神經網路的數學、理論與實作!
▌本書特色
☆機器學習唯一的入門書,從完全不懂到開發專案靠這本書就搞定
☆充分展現出日本書的細膩流暢又簡單清楚
☆想了解機器學習又怕被數學公式轟炸的AI小白最適合
☆作者把所有的數學公式都用最簡單的二維平面來處理,是對人腦最直覺的投射
☆懶人最愛的程式設計環境,Jupyter Notebook,在瀏覽器中就可以執行神經網路
☆高中文組數學程度就可以100%看得懂的Python程式
☆雖然簡單但十分詳細的公式推導
☆L1、L2回歸你我都會用,但這本書卻有完整的來龍去脈,打下神經網路及深度學習的基礎
☆無監督學習也有詳細說明,K-means和混合高斯模型
☆使用Tensorflow,每一行程式碼都看得懂,完全沒有不必要細節或玩弄技巧
作者簡介
伊藤真
日本栃木縣人,目前居住在神奈川縣。
2000年獲得日本東北大學大學院資訊科學博士學位,研究內容為老鼠導航行為的數理模型。2004年~2016年在沖繩科學技術大學院大學擔任神經計算單元實驗小組負責人,主要研究如何通過強化學習模型解釋老鼠的選擇行為和腦活動。
2017年入職Progress Technologies株式會社,研究人工智慧的產業應用。
興趣是用瓦楞紙板做手工藝品。
目錄大綱
第1 章| 學習前的準備
1.1 關於機器學習
1.2 安裝Python
1.3 Jupyter Notebook
1.4 安裝Keras 和TensorFlow
第2 章| Python 基礎知識
2.1 四則運算
2.2 變數
2.3 類型
2.4 print 敘述
2.5 list(陣列變數)
2.6 tuple(陣列)
2.7 if 敘述
2.8 for 敘述
2.9 向量
2.10 矩陣
2.11 矩陣的四則運算
2.12 切片
2.13 替換滿足條件的資料
2.14 help
2.15 函數
2.16 保存檔案
第3 章| 資料視覺化
3.1 繪製二維圖形
3.2 繪製三維圖形
第4 章| 機器學習中的數學
4.1 向量
4.2 求和符號
4.3 累乘符號
4.4 導數
4.5 偏導數
4.6 矩陣
4.7 指數函數和對數函數
第5 章| 監督學習:回歸
5.1 一維輸入的直線模型
5.2 二維輸入的平面模型
5.3 D 維線性回歸模型
5.4 線性基底函數模型
5.5 過擬合問題
5.6 新模型的生成
5.7 模型的選擇
5.8 小結
第6 章| 監督學習:分類
6.1 一維輸入的二元分類
6.2 二維輸入的二元分類
6.3 二維輸入的三元分類
第7 章| 神經網路與深度學習
7.1 神經元模型
7.2 神經網路模型
7.3 使用Keras 實現神經網路模型
第8 章| 神經網路與深度學習的應用(手寫數字辨識)
8.1 MINST 資料集
8.2 二層前饋神經網路模型
8.3 ReLU 啟動函數
8.4 空間篩檢程式
8.5 卷積神經網路
8.6 池化
8.7 Dropout
8.8 融合了各種特性的MNIST 辨識網路模型
第9 章| 無監督學習
9.1 二維輸入資料
9.2 K-means 演算法
9.3 混合高斯模型
第10 章| 本書小結

















