機器學習聖經:最完整的統計學習方法 (好評熱銷版)
李航 著
- 出版商: 深智
- 出版日期: 2025-08-19
- 定價: $880
- 售價: 7.9 折 $695
- 語言: 繁體中文
- 頁數: 584
- ISBN: 6267757188
- ISBN-13: 9786267757185
-
相關分類:
Machine Learning
- 此書翻譯自: 統計學習方法, 2/e
立即出貨 (庫存 < 6)
買這商品的人也買了...
-
核心開發者親授!PyTorch 深度學習攻略 (Deep Learning with Pytorch)$1,000$790 -
高手才用 C語言:Windows C/C++ 加密解密實戰$980$774 -
OpenCV 影像創意邁向 AI 視覺王者歸來 (全彩印刷)$890$703 -
演算法戰鬥營:爆量題庫新手燒腦篇$880$695 -
全格局使用 PyTorch -- 深度學習和圖神經網路 -- 實戰篇$880$695 -
理論到實作都一清二楚 - 機器學習原理深究$1,000$790 -
完全 OS 核心精修 - 熟稔 Windows API 高級篇$1,280$1,011 -
完全 OS 核心精修 - 熟稔 Windows API 基礎篇$980$774 -
世界第一簡單的演算法:圖解 ✕ 程式 ✕ 刷題機器人$599$473 -
全格局使用 PyTorch - 深度學習和圖神經網路 - 基礎篇, 2/e$880$695 -
資料工程基礎|規劃和建構強大、穩健的資料系統 (Fundamentals of Data Engineering)$980$774 -
AI 視覺 : 最強入門邁向頂尖高手 王者歸來$1,280$1,011 -
問 ChatGPT 也不會的 Python 量化交易聖經 - 從分析到真實交易一本全會$880$695 -
AI 時代 Math 元年 - 用 Python 全精通數學要素, 2/e (黑白印刷)$980$774 -
GitHub Copilot 讓你寫程式快 10 倍!AI 程式開發大解放$690$545 -
深度學習詳解|台大李宏毅老師機器學習課程精粹$750$593 -
設計模式與遊戲開發的完美結合 (好評回饋版)$680$530 -
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$663 -
RAG × LangChain 整合應用:從問診機器人開始,打造可信任的 AI 系統 (iThome鐵人賽系列書)$600$468 -
從資料處理到圖論實踐 ― 用 Python 及 AI 最強工具預測分析$1,280$1,011 -
越賣越多的祕密 - 使用 LLM 實作推薦系統及演算法$880$695 -
開發專屬 ChatGPT Operator - AI Agent 全面實戰精解$880$695 -
AI 工程|從基礎模型建構應用 (AI Engineering : Building Applications with Foundation Models)$1,200$948 -
AI Agent 奇幻旅程:MCP 通往異世界金鑰(含最新 OpenAI GPT-5 範例)$680$530 -
本地端 Ollama × LangChain × LangGraph × LangSmith 開發手冊:打造 RAG、Agent、SQL 應用$750$593
商品描述
\\好評熱銷再上市//
☆☆統計學習方法全書☆☆
統計學習方法即為機器學習方法,是電腦及其應用領域的重要學科之一。
本書分為監督學習、無監督學習兩篇,全面系統地介紹了統計學習的主要方法。
將監督學習和無監督學習中最常用、最重要的各類方法以系統性的方式論述,每章講解一種方法,各章內容相對獨立且完整,也有相關習題、參考文獻,並於最後加以總結。讀者可以將全書詳讀,也可以選擇單章細讀。期望讓讀者可以順利掌握完整又清晰的相關知識,進而打下穩固的基礎,並能準確地使用。
本書涵蓋感知機、k近鄰法、單純貝氏法、決策樹、邏輯回歸及最大熵模型、支持向量機、提升方法、EM演算法、隱馬可夫模型、條件隨機場、聚類法、奇異值分解(SVD)、主成分分析(PCA)、潛在語義分析、機率潛在語義分析、馬可夫鏈蒙地卡羅法、潛在狄利克雷分配(LDA)、PageRank演算法等。
【適合讀者群】
.具高等數學、線性代數和機率統計的基礎知識
.從事資訊檢索、自然語言處理、文字資料探勘等領域的學生與研究人員
.從事電腦應用相關專業的研究人員
作者簡介
李航
ACL Fellow、IEEE Fellow 、ACM傑出科學家,北京大學、南京大學兼職教授,研究領域包括資訊檢索、自然語言處理、統計機器學習和資料探勘等。
畢業於日本京都大學電氣電子工程系,日本東京大學電腦科學博士學位。
曾任日本NEC公司中央研究所研究員,微軟亞洲研究院高級研究員與主任研究員,華為諾亞方舟實驗室主任、首席科學家,現任字節跳動人工智慧實驗室總監。
目錄大綱
▌第1篇 監督學習
Chapter01 統計學習及監督學習概論
1.1 統計學習
1.2 統計學習的分類
1.3 統計學習方法三要素
1.4 模型評估與模型選擇
1.5 正則化與交叉驗證
1.6 泛化能力
1.7 生成模型與判別模型
1.8 監督學習應用
Chapter 02 感知機
2.1 感知機模型
2.2 感知機學習策略
2.3 感知機學習演算法
Chapter 03 k近鄰法
3.1 k近鄰演算法
3.2 k近鄰模型
3.3 k近鄰法的實現:kd樹
Chapter 04 單純貝氏法
4.1 單純貝氏法的學習與分類
4.2 單純貝氏法的參數估計
Chapter 05 決策樹
5.1 決策樹模型與學習
5.2 特徵選擇
5.3 決策樹的生成
5.4 決策樹的剪枝
5.5 CART演算法
Chapter 06 邏輯回歸與最大熵模型
6.1 邏輯回歸模型
6.2 最大熵模型
6.3 模型學習的最佳化演算法
Chapter 07 支持向量機
7.1 線性可分支持向量機與硬間隔最大化
7.2 線性支持向量機與軟間隔最大化
7.3 非線性支持向量機與核函數
7.4 序列最小最佳化演算法
Chapter 08 提升方法
8.1 提升方法AdaBoost演算法
8.2 AdaBoost演算法的訓練誤差分析
8.3 AdaBoost演算法的解釋
8.4 提升樹
Chapter 09 EM演算法及其推廣
9.1 EM演算法的引入
9.2 EM演算法的收斂性
9.3 EM演算法在高斯混合模型學習中的應用
9.4 EM演算法的推廣
Chapter 10 隱馬可夫模型
10.1 隱馬可夫模型的基本概念
10.2 機率計算演算法
10.3 學習演算法
10.4 預測演算法
Chapter 11 條件隨機場
11.1 機率無向圖模型
11.2 條件隨機場的定義與形式
11.3 條件隨機場的機率計算問題
11.4 條件隨機場的學習演算法
11.5 條件隨機場的預測演算法
Chapter 12 監督學習方法總結
▌第2篇 無監督學習
Chapter 13 無監督學習概論
13.1 無監督學習基本原理
13.2 基本問題
13.3 機器學習三要素
13.4 無監督學習方法
Chapter 14 聚類方法
14.1 聚類的基本概念
14.2 層次聚類
14.3 k均值聚類
Chapter 15 奇異值分解
15.1 奇異值分解的定義與性質
15.2 奇異值分解的計算
15.3 奇異值分解與矩陣近似
Chapter 16 主成分分析
16.1 整體主成分分析
16.2 樣本主成分分析
Chapter 17 潛在語義分析
17.1 單字向量空間與話題向量空間
17.2 潛在語義分析演算法
17.3 非負矩陣分解演算法
Chapter 18 機率潛在語義分析
18.1 機率潛在語義分析模型
18.2 機率潛在語義分析的演算法
Chapter 19 馬可夫鏈蒙地卡羅法
19.1 蒙地卡羅法
19.2 馬可夫鏈
19.3 馬可夫鏈蒙地卡羅法
19.4 Metropolis-Hastings演算法
19.5 吉布斯抽樣
Chapter 20 潛在狄利克雷分配
20.1 狄利克雷分佈
20.2 潛在狄利克雷分配模型
20.3 LDA的吉布斯抽樣演算法
20.4 LDA的變分EM演算法
Chapter 21 PageRank演算法
21.1 PageRank的定義
21.2 PageRank的計算
Chapter 22 無監督學習方法總結
22.1 無監督學習方法的關係和特點
22.2 話題模型之間的關係和特點
Appendix A 梯度下降法
Appendix B 牛頓法和擬牛頓法
Appendix C 拉格朗日對偶性
Appendix D 矩陣的基本子空間
Appendix E KL散度的定義和狄利克雷分佈的性質
Appendix F 索引

















