稀疏學習、分類與識別 稀疏学习、分类与识别
焦李成, 尚榮華, 劉芳, 楊淑媛, 等
- 出版商: 科學出版社
- 出版日期: 2017-03-01
- 定價: $828
- 售價: 7.9 折 $654
- 語言: 簡體中文
- 頁數: 310
- 裝訂: 平裝
- ISBN: 7030523474
- ISBN-13: 9787030523471
-
相關分類:
DeepLearning、Machine Learning
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
機器學習$648$616 -
$534稀疏統計學習及其應用 -
$528分佈式信息融合 -- 理論與方法 -
$280TensorFlow 智能算法與應用 -
$414面向雲平臺的物聯網多源異構信息融合方法 -
$329基於 MATLAB 的遺傳算法及其在稀布陣列天線中的應用, 2/e -
$454智能天線:MATLAB 實踐版, 2/e (Smart Antennas with MATLAB, 2/e) -
$177MATLAB/System View 通信原理實驗與系統模擬, 2/e -
$474工業大數據融合體系結構與關鍵技術 -
圖解量子電腦入門:8堂基礎課程+必懂關鍵詞解說,從計算原理到實務應用、通訊到演算,破解讓人類大躍進的科技新浪潮$420$357 -
$551FPGA 進階開發與實踐 -
$450基於完全互補序列的 MIMO 雷達與 5G MIMO 通信 -
$534Cadence 高速 PCB 設計 -
Verilog HDL 數字系統設計與驗證 — 以太網交換機案例分析$354$336 -
Multifunctional Antennas and Arrays for Wireless Communication Systems (Hardcover)$3,800$3,610 -
基於 SiP 技術的微系統$1,188$1,129 -
Verilog HDL 算法與電路設計 -- 通信和電腦網絡典型案例$414$393 -
$422陣列信號參數估計算法與優化 -
$485通信系統 — 使用 MATLAB 分析與實現 (Communication Systems Principles Using MATLAB) -
$690MATLAB 2020 信號處理從入門到精通 -
Advanced Antenna Array Engineering for 6g and Beyond Wireless Communications (Hardcover)$1,750$1,715 -
$254智能控制基礎 -
$811多源信息融合, 3/e -
$569時間敏感網絡技術及發展趨勢 -
$507MATLAB/Simulink 通信系統建模與模擬
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$576 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
本書對近年來稀疏學習、分類與識別領域常見的理論及技術進行了較為全面的闡述和總結,並結合作者多年的研究成果,對相關理論及技術在應用領域的實踐情況進行了展示和報告。全書從稀疏學習、分類與識別三個方面展開介紹,主要內容包含如下幾個方面:以學習數據的有效表示為主題,通過挖掘數據本身固有的結構,如幾何結構、稀疏與低秩結構等信息來更有效地學習數據的表示;從經典的壓縮感知理論框架出發,討論壓縮感知的基本理論、方
目錄大綱
第1章引言
1.1機器學習理論
1.1.1維數約簡
1.1.2稀疏與低秩
1.1.3半監督學習
1.2壓縮感知理論
1.2.1壓縮感知的研究意義
1.2.2壓縮感知的理論框架
1.2 .3壓縮感知的重構算法介紹
1.3高光譜遙感技術
1.3.1遙感技術
1.3.2高光譜遙感技術發展現狀
1.3.3高光譜遙感技術的應用
參考文獻
第2章機器學習理論基礎
2.1維數約簡的研究進展
2.1.1子空間分割
2.1.2稀疏表示
2.1.3矩陣恢復與填充
2.1.4非線性降維
2.2半監督學習與核學習的研究進展
2.2.1半監督學習
2.2.2非參數核學習
參考文獻
第3章快速密度加權低秩近似譜聚類
3.1引言
3.2背景與相關工作
3.2.1譜聚類算法
3.2.2近鄰傳播算法
3.2.3Nystrom方法
3.3全局距離測度與採樣算法
3.3.1全局距離
3.3.2快速採樣算法
3.4快速兩階段譜聚類框架
3.4.1採樣階段
3.4.2正交化的密度加權近似譜聚類階段
3.5算法分析
3.5.1採樣算法比較
3.5.2有效性分析
3.5.3快速近鄰搜索
3.5.4複雜度分析
3.6實驗結果
3.6 .1雙螺旋線數據
3.6.2實際數據
3.6.3評價指標
3.6.4比較算法
3.6.5聚類結果
3.6.6參數穩定性分析
3.6.7譜嵌入
參考文獻
附錄
第4章雙圖正則非負矩陣分解
4.1引言
4.2相關工作
4.2.1非負矩陣分解
4.2.2圖正則非負矩陣分解
4.2.3雙正則聯合聚類
4.3雙圖正則非負矩陣分解方法
4.3.1數據圖與特徵圖
4.3. 2DNMF模型
4.3.3疊代更新規則
4.3.4收斂性分析
4.4雙圖正則非負矩陣三分解
4.4.1DNMTF模型
4.4.2疊代規則
4.4.3收斂性分析
4.4.4複雜度分析
4.5實驗
4.5.1比較算法
4.5.2UCI數據
4.5.3圖像數據
4.5.4穩定性分析
4.5.5雷達高分辨距離像數據
參考文獻
附錄A(定理4.1的證明)
附錄B(定理4.2的證明)
第5章學習魯棒低秩矩陣分解
5.1引言
5.2相關工作及研究進展
5.3魯棒低秩矩陣分解框架
5.3.1單子空間模型
5.3.2多子空間模型
5.4基於交替方向法的疊代算法
5.4.1引入輔助變量
5.4.2疊代求解算法
5.4.3求解單子空間模型
5.4 .4拓展應用於矩陣填充
5.4.5複雜度分析
5.5實驗
5.5.1人工數據聚類
5,5.2人臉聚類
5.5.3背景建模
5.5.4圖像修復
參考文獻
第6章學習譜表示應用於半監督聚類
6.1引言
6.2圖的創建與譜表示
6.2.1對稱偏好圖
6.2.2圖拉普拉斯譜嵌入
6.3問題模型與求解
6.3.1目標函數
6.3.2問題求解
6.4算法
6.4.1半監督聚類
6.4.2直推式分類
6.4.3複雜度分析
6.5實驗
6.5.1比較算法與參數設置
6.5.2人工數據集
6.5.3向量型數據
6.5.4圖結構數據
6.5.5半監督聚類應用
6.5.6直推式分類應用
參考文獻
第7章應用低秩矩陣填充學習數據表示
7.1引言
7.2學習譜表示框架
7.2.1核矩陣填充
7.2.2提升矩陣學習模型
7.3特徵值疊代閾值算法
7.3.1改進的不動點算法
7.3.2加速策略
7.3.3半監督聚類
7.3.4推廣到分類問題
7.3.5複雜度分析
7.4收斂性分析
7.5實驗
7.5.1學習譜表示
7.5.2比較算法與參數設置
7.5.3向量型數據
7.5.4圖結構數據
7.5.5分類應用
參考文獻
附錄A(定理7.2的證明)
附錄B(定理7.3的證明)
附錄C(定理7.4的證明)
附錄D(定理7.6的證明)
第8章結合約束與低秩核學習的半監督學習
8.1引言
8.2符號與相關工作
8.3複合信息半監督學習框架
8.3.1基本框架
8.3.2核範數正則模型
8.4半監督學習算法
8.4.1改進的不動點疊代算法
8.4.2連續性策略和BB步長技術
8.4.3標籤傳播
8.5算法分析
8.5.1收斂性分析
8.5.2合法核
8.5.3複雜度分析
8.5.4歸納分類
8.6實驗
8.6.1比較算法與參數設置
8.6.2交叉螺旋線數據
8.6.3實際數據
8.6.4直推式分類
8.6.5歸納分類
參考文獻
第9章基於子空間類標傳播和正則判別分析的單標記圖像人臉識別
第10章基於雙線性回歸的單標記圖像人臉識別
第11章基於旋轉擴展和稀疏表示的魯棒遙感圖像目標識別
第12章壓縮感知理論基礎
第13章基於分塊策略和過完備字典的非凸壓縮感知框
第14章基於協同優化的稀疏重構
第15章基於過完備字典的方向結構估計模型及重構方法
第16章基於光譜信息散度與稀疏表示的高光譜圖像分類
第17章基於多特徵核稀疏表示學習的高光譜圖像分類

