数据挖掘导论(英文版)
暫譯: 數據挖掘導論(英文版)
(美) Pang-Ning Tan , Michael Steinbach , Vipin Kumar 著
- 出版商: 機械工業
- 出版日期: 2010-09-01
- 定價: $354
- 售價: 7.9 折 $280
- 語言: 英文
- 頁數: 769
- ISBN: 7111316703
- ISBN-13: 9787111316701
-
相關分類:
Data-mining
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$479數據挖掘導論 (完整版) (Introduction to Data Mining) -
計算機科學中的數學:信息與智能時代的必修課$1,008$958 -
$465統計學習方法, 2/e
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
VIP 95折
深入淺出 SSD 測試 : 固態存儲測試流程 方法與工具$594$564 -
VIP 95折
MCP 開發從入門到實戰$515$489 -
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
RISC-V 架構 DSP 處理器設計$534$507 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
85折
$454RAG 實踐權威指南:構建精準、高效大模型之道 -
VIP 95折
CUDA 並行編程與性能優化$714$678 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
VIP 95折
大模型驅動的具身智能 架構,設計與實現$534$507 -
VIP 95折
納米級CMOS VLSI電路(可制造性設計)$474$450 -
VIP 95折
Manus應用與AI Agent設計指南:從入門到精通$359$341 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
VIP 95折
芯片的較量 (日美半導體風雲)$414$393 -
VIP 95折
Manus AI 智能體從入門到精通$294$279 -
87折
$981深度學習:基礎與概念 -
85折
$505GitHub Copilot 編程指南 -
87折
$469Cursor 與 Copilot 開發實戰 : 讓煩瑣編程智能化 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
Verilog HDL 計算機網絡典型電路算法設計與實現$354$336 -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
85折
$505GitHub Copilot 編程指南 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673 -
VIP 95折
深入淺出 Docker, 2/e$419$398 -
85折
$658Unity 特效制作:Shader Graph 案例精講 -
79折
$275零基礎玩轉國產大模型DeepSeek -
VIP 95折
人工智能大模型:機器學習基礎$774$735 -
VIP 95折
RAG 極簡入門:原理與實踐$419$398 -
VIP 95折
大模型實戰 : 從零實現 RAG 與 Agent 系統$419$398 -
VIP 95折
算法趣學(第2版)$348$331 -
VIP 95折
大模型理論與實踐——打造行業智能助手$354$336 -
VIP 95折
大模型應用開發 RAG 實戰課$599$569 -
85折
$509生成式人工智能 (基於 PyTorch 實現) -
VIP 95折
機器人抓取力學$894$849 -
VIP 95折
集成電路版圖設計從入門到精通$474$450 -
VIP 95折
Java 學習筆記, 6/e$839$797
相關主題
商品描述
本書全面介紹了數據挖掘的理論和方法,著重介紹如何用數據挖掘知識解決各種實際問題,涉及學科領域眾多,適用面廣。書中涵蓋5個主題︰數據、分類、關聯分析、聚類和異常檢測。除異常檢測外,每個主題都包含兩章︰前面一章講述基本概念、代表性算法和評估技術,後面一章較深入地討論高級概念和算法。目的是使讀者在透徹地理解數據挖掘基礎的同時,還能了解更多重要的高級主題。包含大量的圖表、綜合示例和豐富的習題。‧不需要數據庫背景。只需要很少的統計學或數學背景知識。‧網上配套教輔資源豐富,包括PPT、習題解答、數據集等。
商品描述(中文翻譯)
本書全面介紹了數據挖掘(Data Mining)的理論和方法,著重介紹如何用數據挖掘知識解決各種實際問題,涉及學科領域眾多,適用面廣。書中涵蓋五個主題︰數據(Data)、分類(Classification)、關聯分析(Association Analysis)、聚類(Clustering)和異常檢測(Anomaly Detection)。除異常檢測外,每個主題都包含兩章︰前面一章講述基本概念、代表性算法和評估技術,後面一章較深入地討論高級概念和算法。目的是使讀者在透徹地理解數據挖掘基礎的同時,還能了解更多重要的高級主題。包含大量的圖表、綜合示例和豐富的習題。‧不需要數據庫背景。只需要很少的統計學或數學背景知識。‧網上配套教輔資源豐富,包括PPT、習題解答、數據集等。
目錄大綱
Preface
1 Introduction
1.1 What Is Data Mining?
1.2 Motivating Challenges
1.3 The Origins of Data Mining
1.4 Data Mining Tasks
1.5 Scope and Organization of the Book
1.6 Bibliographic Notes
1.7 Exercises
2 Data
2.1 Types of Data
2.1.1 Attributes and Measurement
2.1.2 Types of Data Sets
2.2 Data Quality
2.2.1 Measurement and Data Collection Issues
2.2.2 Issues Related to Applications
2.3 Data Preprocessing
2.3.1 Aggregation
2.3.2 Sampling
2.3.3 Dimensionality Reduction
2.3.4 Feature Subset Selection
2.3.5 Feature Creation
2.3.6 Discretization and Binarization
2.3.7 Variable Transformation
2.4 Measures of Similarity and Dissimilarity
2.4.1 Basics
2.4.2 Similarity and Dissimilarity between Simple Attributes.
2.4.3 Dissimilarities between Data Objects
2.4.4 Similarities between Data Objects
2.4.5 Examples of Proximity Measures
2.4.6 Issues in Proximity Calculation
2.4.7 Selecting the Right Proximity Measure
2.5 Bibliographic Notes
2.6 Exercises
3 Exploring Data
3.1 The Iris Data Set
3.2 Summary Statistics
3.2.1 Frequencies and the Mode
3.2.2 Percentiles
3.2.3 Measures of Location: Mean and Median
3.2.4 Measures of Spread: Range and Variance
3.2.5 Multivariate Summary Statistics
3.2.6 Other Ways to Summarize the Data
3.3 Visualization
3.3.1 Motivations for Visualization
3.3.2 General Concepts
3.3.3 Techniques
3.3.4 Visualizing Higher-Dimensional Data
3.3.5 Do﹀s and Don﹀ts
3.4 OLAP and Multidimensional Data Analysis
3.4.1 Representing Iris Data as a Multidimensional Array
3.4.2 Multidimensional Data: The General Case
3.4.3 Analyzing Multidimensional Data
3.4.4 Final Comments on Multidimensional Data Analysis
3.5 Bibliographic Notes
3.6 Exercises
Classification:
4 Basic Concepts, Decision Trees, and Model Evaluation
4.1 Preliminaries
4.2 General Approach to Solving a Classification Problem
4.3 Decision Tree Induction
4.3.1 How a Decision Tree Works
4.3.2 How to Build a Decision Tree
4.3.3 Methods for Expressing Attribute Test Conditions
4.3.4 Measures for Selecting the Best Split
4.3.5 Algorithm for Decision Tree Induction
4.3.6 An Example: Web Robot Detection
4.3.7 Characteristics of Decision Tree Induction
4.4 Model Overfitting
4.4.1 Overfitting Due to Presence of Noise
4.4.2 Overfitting Due to Lack of Representative Samples
4.4.3 Overfitting and the Multiple Comparison Procedure
4.4.4 Estimation of Generalization Errors
4.4.5 Handling Overfitting in Decision Tree Induction
4.5 Evaluating the Performance of a Classifier
4.5.1 Holdout Method
4.5.2 Random Subsampling
4.5.3 Cross-Validation
4.5.4 Bootstrap
4.6 Methods for Comparing Classifiers
4.6.1 Estimating a Confidence Interval for Accuracy
4.6.2 Comparing the Performance of Two Models
4.6.3 Comparing the Performance of Two Classifiers
4.7 Bibliographic Notes
4.8 Exercises
5 Classification: Alternative Techniques
6 Association Analysis: Basic Concepts and Algorithms
7 Association Analysis:Advanced Concepts
8 Cluster Analysis:Basic Concepts and Algorithms
9 Cluster Analysis:Additional Issues and Algorithms
10 Anomaly Detection
Appendix A Linear Algebra
Appendix B Dimensionality Reduction
Appendix C Probability and Statistics
Appendix D Regression
Appendix E Optimization
Author Index
Subject Index
Copyright Permissions
目錄大綱(中文翻譯)
Preface
1 Introduction
1.1 What Is Data Mining?
1.2 Motivating Challenges
1.3 The Origins of Data Mining
1.4 Data Mining Tasks
1.5 Scope and Organization of the Book
1.6 Bibliographic Notes
1.7 Exercises
2 Data
2.1 Types of Data
2.1.1 Attributes and Measurement
2.1.2 Types of Data Sets
2.2 Data Quality
2.2.1 Measurement and Data Collection Issues
2.2.2 Issues Related to Applications
2.3 Data Preprocessing
2.3.1 Aggregation
2.3.2 Sampling
2.3.3 Dimensionality Reduction
2.3.4 Feature Subset Selection
2.3.5 Feature Creation
2.3.6 Discretization and Binarization
2.3.7 Variable Transformation
2.4 Measures of Similarity and Dissimilarity
2.4.1 Basics
2.4.2 Similarity and Dissimilarity between Simple Attributes.
2.4.3 Dissimilarities between Data Objects
2.4.4 Similarities between Data Objects
2.4.5 Examples of Proximity Measures
2.4.6 Issues in Proximity Calculation
2.4.7 Selecting the Right Proximity Measure
2.5 Bibliographic Notes
2.6 Exercises
3 Exploring Data
3.1 The Iris Data Set
3.2 Summary Statistics
3.2.1 Frequencies and the Mode
3.2.2 Percentiles
3.2.3 Measures of Location: Mean and Median
3.2.4 Measures of Spread: Range and Variance
3.2.5 Multivariate Summary Statistics
3.2.6 Other Ways to Summarize the Data
3.3 Visualization
3.3.1 Motivations for Visualization
3.3.2 General Concepts
3.3.3 Techniques
3.3.4 Visualizing Higher-Dimensional Data
3.3.5 Do﹀s and Don﹀ts
3.4 OLAP and Multidimensional Data Analysis
3.4.1 Representing Iris Data as a Multidimensional Array
3.4.2 Multidimensional Data: The General Case
3.4.3 Analyzing Multidimensional Data
3.4.4 Final Comments on Multidimensional Data Analysis
3.5 Bibliographic Notes
3.6 Exercises
Classification:
4 Basic Concepts, Decision Trees, and Model Evaluation
4.1 Preliminaries
4.2 General Approach to Solving a Classification Problem
4.3 Decision Tree Induction
4.3.1 How a Decision Tree Works
4.3.2 How to Build a Decision Tree
4.3.3 Methods for Expressing Attribute Test Conditions
4.3.4 Measures for Selecting the Best Split
4.3.5 Algorithm for Decision Tree Induction
4.3.6 An Example: Web Robot Detection
4.3.7 Characteristics of Decision Tree Induction
4.4 Model Overfitting
4.4.1 Overfitting Due to Presence of Noise
4.4.2 Overfitting Due to Lack of Representative Samples
4.4.3 Overfitting and the Multiple Comparison Procedure
4.4.4 Estimation of Generalization Errors
4.4.5 Handling Overfitting in Decision Tree Induction
4.5 Evaluating the Performance of a Classifier
4.5.1 Holdout Method
4.5.2 Random Subsampling
4.5.3 Cross-Validation
4.5.4 Bootstrap
4.6 Methods for Comparing Classifiers
4.6.1 Estimating a Confidence Interval for Accuracy
4.6.2 Comparing the Performance of Two Models
4.6.3 Comparing the Performance of Two Classifiers
4.7 Bibliographic Notes
4.8 Exercises
5 Classification: Alternative Techniques
6 Association Analysis: Basic Concepts and Algorithms
7 Association Analysis:Advanced Concepts
8 Cluster Analysis:Basic Concepts and Algorithms
9 Cluster Analysis:Additional Issues and Algorithms
10 Anomaly Detection
Appendix A Linear Algebra
Appendix B Dimensionality Reduction
Appendix C Probability and Statistics
Appendix D Regression
Appendix E Optimization
Author Index
Subject Index
Copyright Permissions
