推薦系統:原理與實踐 (Recommender Systems: The Textbook) 推荐系统:原理与实践
Charu C. Aggarwal
- 出版商: 機械工業
- 出版日期: 2018-07-24
- 定價: $774
- 售價: 8.5 折 $658
- 語言: 簡體中文
- 頁數: 374
- 裝訂: 平裝
- ISBN: 7111600320
- ISBN-13: 9787111600329
-
相關分類:
推薦系統
- 此書翻譯自: Recommender Systems: The Textbook
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$352數據科學與大數據分析數據的發現分析可視化與表示 -
$588NLP 漢語自然語言處理原理與實踐 -
Effective SQL 中文版 | 寫出良好 SQL 的 61個具體做法 (Effective SQL : 61 Specific Ways to Write Better SQL)$450$356 -
$474深度學習入門之 PyTorch -
演算法圖鑑:26種演算法 + 7種資料結構,人工智慧、數據分析、邏輯思考的原理和應用 step by step 全圖解$450$356 -
MIS 一定要懂的 82個網路技術知識$360$284 -
資安防禦指南|資訊安全架構實務典範 (Defensive Security Handbook: Best Practices for Securing Infrastructure)$580$458 -
人工智能基礎 (高中版)(*封面書況瑕疵,不介意再下單)$210$200 -
推薦系統實踐$419$398 -
$709推薦系統:技術、評估及高效算法, 2/e (Recommender Systems Handbook, 2/e) -
$327機器學習算法實踐 — 推薦系統的協同過濾理論及其應用 -
圖解 Linux 核心工作原理|透過實作與圖解學習OS與硬體的基礎知識$450$356 -
$332推薦系統與深度學習 -
$414Kudu:構建高性能實時數據分析存儲系統 -
超圖解 Python 程式設計入門$650$553 -
$403推薦系統開發實戰 -
Python 技術者們 - 練功!老手帶路教你精通正宗 Python 程式 (The Quick Python Book, 3/e)$780$663 -
深度學習 (Deep Learning)(繁體中文版)$1,200$948 -
Bash 資安管理手冊 (Cybersecurity Ops with bash)$580$458 -
380個精選實例:一步步昇華成 .NET Core 大內高手$880$695 -
猜心競賽 : 從實作了解推薦系統演算法$780$616 -
Fundamentals of Machine Learning for Predictive Data Analytics : Algorithms, Worked Examples, and Case Studies, 2/e (Hardcover)$1,450$1,421 -
Effective Python 中文版|寫出良好 Python 程式的 90個具體做法, 2/e (Effective Python: 90 Specific Ways to Write Better Python, 2/e)$580$458 -
$659數據挖掘:原理與實踐(基礎篇) -
實用推薦系統$714$678
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
75折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$375 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
《 推薦系統:技術、評估及高效算法(原書第2版) 》:
本書由五部分組成:推薦系統的技術、評估、應用、人機交互及高級話題。
第一部分展示瞭如今構建推薦系統的流行和基礎的技術,如協同過濾、基於語義的方法、數據挖掘方法和基於情境感知的方法。
第二部分主要關註離線和真實用戶環境下用於評估推薦質量的技術及方法。
第三部分包括了一些推薦技術多樣性的應用。首先簡述了與工業實現和推薦系統開發相關的一般性問題,隨後詳細介紹了推薦系統在各領域中的應用:音樂、學習、移動、社交網絡及它們之間的交互。
第四部分包含了探討一系列問題的文章,這些問題包括推薦的展示、瀏覽、解釋和視覺化以及人工決策與推薦系統相關的重要問題。
第五部分收集了一些關於高級話題的文章,例如利用主動學習技術來引導新知識的學習,構建能夠抵擋惡意用戶攻擊的健壯推薦系統的合適技術,以及結合多種用戶反饋和偏好來生成更加可靠的推薦系統。
本書介紹當前推薦系統領域中的經典方法。
不僅詳細討論了各類方法,還對同類技術進行了歸納總結,這有助於讀者對當前推薦系統研究領域有全面的瞭解。
書中提供了大量的例子和習題來幫助讀者深入理解和掌握相關技術。
此外,本書還介紹了當前新的研究方向,為讀者進行推薦系統技術的研究提供參考。
本書既可以作為計算機相關專業本科生和研究生的教材,也適合開發人員和研究人員閱讀。
作者簡介
作者:(美)查魯·C.阿加沃爾譯者:黎玲利譯者:尹丹譯者:李默涵譯者:王宏誌
查魯·C.阿加沃爾(Charu C.Aggarwal), IBM TJWatson研究中心傑出研究人員(DRSM),於1996年在MIT獲得博士學位。
他對數據挖掘領域有著廣泛的研究。在國際會議和期刊上發表了300餘篇論文。申請了90餘項專利。
他曾三次被評為IBM的“傑出發明人”(Master Inventor)。並曾獲得IBM公司獎(IBM Corporate Award,2003)、IBM傑出創新獎和兩項IBM傑出技術成就獎(2009,2015)。
他因為提出基於冷凝的數據挖掘中的隱私保護技術而獲得EDBT2014的時間檢驗獎(Test of Time Award)。
他還獲得了IEEE ICDM研究貢獻獎(2015),這是數據挖掘領域對具有突出貢獻的研究的兩項最高獎項之一。
他曾多次擔任ACM/IEEE知名國際學術會議的主席或程序委員會主席。
並擔任大數據相關多個知名期刊的主編或編委。由於在知識發現和數據挖掘算法上的貢獻,他入選SIAM、ACM和IEEE的會士。
