TensorFlow 機器學習 (Machine Learning with TensorFlow)
Nishant Shukla
- 出版商: 機械工業
- 出版日期: 2019-11-01
- 定價: $414
- 售價: 7.5 折 $311
- 語言: 簡體中文
- 裝訂: 平裝
- ISBN: 7111636120
- ISBN-13: 9787111636120
-
相關分類:
TensorFlow
- 此書翻譯自: Machine Learning with TensorFlow
-
其他版本:
TensorFlow 機器學習 (原書第2版)
買這商品的人也買了...
-
$276ASP.NET MVC 程序設計教程, 3/e -
$202深度學習:方法及應用 -
$374深入淺出深度學習:原理剖析與Python實踐 -
$185基於 TensorFlow 的深度學習 : 揭示數據隱含的奧秘 -
$327PaddlePaddle深度學習實戰 -
$308PaddlePaddle與深度學習應用實戰 -
$327深度學習:核心技術、工具與案例解析 -
JavaScript 資料結構及演算法實作 (暢銷回饋版)$300$234 -
$403狼書 (捲1) : 更了不起的 Node.js -
狼書 (捲2):Node.js Web 應用開發$594$564 -
$374機器學習實戰:基於Sophon平臺的機器學習理論與實踐 -
$232精通 Python 設計模式, 2/e (Mastering Python Design Patterns : A guide to creating smart, efficient and reusable software, 2/e) -
$352寫給系統管理員的 Python 腳本編程指南 -
$658基於數據分析的網絡安全, 2/e (Network Security through Data Analysis: From Data to Action, 2/e) -
Mastering Active Directory, 3/e (Paperback)$2,160$2,052 -
$588HYDRA 製造執行系統指南 — 完美的 MES 解決方案 -
CYBERSEC 2023 臺灣資安年鑑 ─ X Defense 全面守禦 寸土不讓$179$161 -
CYBERSEC 2024 臺灣資安年鑑 ─ AI 資安 2024 徹底剖析生成式 AI 資安攻防態勢$179$161 -
$505紅隊實戰寶典之內網滲透測試 -
LLM 的大開源時代 - Llama 模型精讀實戰$650$514 -
讓 AI 好好說話!從頭打造 LLM (大型語言模型) 實戰秘笈$680$537 -
CYBERSEC 2025 臺灣資安年鑑─全球地緣政治衝突激化,國家級駭客鎖定企業$179$161 -
資訊安全管理領導力實戰手冊$599$509 -
網路可程式性與自動化 |新世代網路工程師必備技能, 2/e (Network Programmability and Automation: Skills for the Next-Generation Network Engineer, 2/e)$1,380$1,090 -
資安法到 ISO 27001 的稽核攻防:AI 神隊友助力$1,080$972
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
75折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$375 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
TensorFlow機器學習由淺入深地對TensorFlow進行了介紹,
並對TensorFlow的本質、核心學習算法
(線性回歸、分類、聚類、隱馬爾可夫模型)
和神經網絡的類型(自編碼器、強化學習、捲積神經網絡和循環神經網絡)
都進行了詳細介紹,同時配以代碼實現。
TensorFlow機器學習可作為人工智能、機器學習、
深度學習相關行業的從業者和愛好者的重要參考書。
作者簡介
Nishant Shukla
加州大學洛杉磯分校的博士研究員,
專註於機器學習和計算機視覺技術。
Nishant還具有弗吉尼亞大學計算機科學和數學學士學位。
在那裡,他是Hack.UVA的創始成員,
並且講授關於Haskell的廣受歡迎的課程。
Nishant曾擔任Microsoft、Facebook和Foursquare的開發人員,
以及SpaceX的機器學習工程師,
他還著有Haskell Data Analysis Cookbook一書。
此外,他還發表了從分析化學到自然語言處理的研究論文。
目錄大綱
原書序
原書前言
第一部分 機器學習套裝
第1章 機器學習旅程 2
1.1 機器學習基礎 3
1.1.1 參數 5
1.1.2 學習和推理 6
1.2 數據表示和特徵 7
1.3 距離度量 11
1.4 學習類型 12
1.4.1 監督學習 12
1.4.2 無監督學習 14
1.4.3 強化學習 14
1.5 TensorFlow 15
1.6 餘下的章節 17
1.7 小結 18
第2章 TensorFlow基礎 19
2.1 保證TensorFlow運行 21
2.2 張量表示 21
2.3 創建運算 25
2.4 使用session執行運算 27
2.4.1 將代碼理解為圖 28
2.4.2 設置session的配置項 28
2.5 使用Jupyter寫代碼 30
2.6 使用變量 32
2.7 保存和加載變量 34
2.8 使用TensorBoard可視化數據 35
2.8.1 實現一個移動平均算法 36
2.8.2 可視化移動平均算法 37
2.9 小結 39
第二部分 核心學習算法
第3章 線性回歸及其他 42
3.1 形式化定義 43
3.1.1 如何知道回歸算法在起作用 45
3.2 線性回歸 46
3.3 多項式模型 50
3.4 正則化 52
3.5 線性回歸的應用 55
3.6 小結 56
第4章 簡明的分類介紹 58
4.1 形式化定義 59
4.2 衡量分類性能 61
4.2.1 精度 61
4.2.2 準確率和召回率 62
4.2.3 受試者工作特徵曲線 63
4.3 用線性回歸實現分類 64
4.4 邏輯斯諦回歸 68
4.4.1 求解一維邏輯斯諦回歸 69
4.4.2 求解二維邏輯斯諦回歸 71
4.5 多類別分類器 74
4.5.1 一對多 75
4.5.2 一對一 75
4.5.3 softmax回歸 75
4.6 分類的應用 79
4.7 小結 79
第5章 自動聚類數據 81
5.1 在TensorFlow中遍歷文件 82
5.2 從音頻文件中抽取特徵 84
5.3 k-均值聚類 87
5.4 音頻分割 90
5.5 用自組織映射實現聚類 93
5.6 聚類的應用 97
5.7 小結 97
第6章 隱馬爾可夫模型 98
6.1 一個不那麼可解釋模型的例子 99
6.2 馬爾可夫模型 100
6.3 隱馬爾可夫模型 102
6.4 前向算法 103
6.5 Viterbi解碼 106
6.6 隱馬爾可夫模型的使用 107
6.6.1 視頻建模 107
6.6.2 DNA建模 107
6.6.3 圖像建模 107
6.7 隱馬爾可夫模型的應用 108
6.8 小結 108
第三部分 神經網絡樣式
第7章 自編碼器 110
7.1 神經網絡 111
7.2 自編碼器 114
7.3 批量訓練 118
7.4 圖像處理 119
7.5 自編碼器的應用 122
7.6 小結 123
第8章 強化學習 124
8.1 形式化定義 125
8.1.1 策略 126
8.1.2 效用函數 127
8.2 強化學習的應用 128
8.3 強化學習的實現 129
8.4 探索強化學習的其他應用 136
8.5 小結 137
第9章 捲積神經網絡 138
9.1 神經網絡的缺點 139
9.2 捲積神經網絡 140
9.3 準備圖像 141
9.3.1 生成過濾器 144
9.3.2 使用過濾器進行捲積 145
9.3.3 最大池化 148
9.4 使用TensorFlow實現捲積神經網絡 149
9.4.1 測量性能 151
9.4.2 訓練分類器 152
9.5 提高性能的竅門和技巧 153
9.6 捲積神經網絡的應用 154
9.7 小結 154
第10章 循環神經網絡 155
10.1 語境信息 156
10.2 循環神經網絡介紹 156
10.3 循環神經網絡的實現 157
10.4 時間序列數據的預測模型 160
10.5 循環神經網絡的應用 163
10.6 小結 163
第11章 聊天機器人的序列到序列模型 164
11.1 分類與循環神經網絡 165
11.2 序列到序列模型架構 167
11.3 符號的向量表示 171
11.4 把所有都放到一起 173
11.5 收集對話數據 179
11.6 小結 181
第12章 效用場景 182
12.1 偏好模型 184
12.2 圖像嵌入 189
12.3 圖像排序 192
12.4 小結 196
12.5 下一步 196
附錄 安裝 197
