因果推理:基礎與學習算法 Elements of Causal Inference: Foundations and Learning Algorithms
Jonas Peters,Dominik Janzing,Bernhard Sch?lkopf
- 出版商: 機械工業
- 出版日期: 2021-07-01
- 定價: $534
- 售價: 8.5 折 $454
- 語言: 簡體中文
- 頁數: 248
- 裝訂: 平裝
- ISBN: 7111640306
- ISBN-13: 9787111640301
-
相關分類:
Machine Learning
- 此書翻譯自: Elements of Causal Inference: Foundations and Learning Algorithms (Hardcover)
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$602知識圖譜:方法、實踐與應用 -
$709應用線性代數 -
人工智能算法 捲2 受大自然啟發的算法$414$393 -
$297可解釋機器學習:黑盒模型可解釋性理解指南 -
$163傾向值匹配法的概述與應用:從統計關聯到因果推論 -
$559自然語言處理:基於預訓練模型的方法 -
圖解 AI 與深度學習的運作機制$480$379 -
$454博弈論:策略分析入門, 3/e (Game Theory: A Nontechnical Introduction to the Analysis of Strategy, 3/e) -
軟體專案估算$620$484 -
Google 的軟體工程之道|從程式設計經驗中吸取教訓 (Software Engineering at Google)$880$695 -
$454計算貝葉斯統計導論 -
$403因果推斷:基於圖模型分析羅銳 -
可解釋的機器學習 - 用因果推斷來學習箇中奧祕$680$537 -
$611R語言實戰, 3/e -
$1,015數據挖掘與機器學習 : 基礎概念和算法 (原書2版) (Data Mining and Machine Learning: Fundamental Concepts and Algorithms, 2/e) -
$862應用多元統計(原書5版) -
$469多模態深度學習技術基礎 -
$602因果推斷與機器學習 (修訂版) -
$356強化學習演算法入門 -
$531大語言模型應用指南:以 ChatGPT 為起點,從入門到精通的 AI 實踐教程 (全彩) -
多模態大模型:算法、應用與微調$714$678 -
生成式 AI 實戰基於 Transformer、Stable Diffusion、LangChain 和 AI Agent$479$455 -
$510零基礎開發 AI Agent:手把手教你用釦子做智能體 -
AI 時代 Math 元年 - 用 Python 全精通機器學習 (黑白印刷)$1,080$853 -
從源頭就優化 - 動手開發自己的編譯器實戰$880$695
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
從概率統計的角度入手,分析了因果推理的假設,
揭示這些假設所暗示的因果推理和學習的目的。
本書分別論述了兩個變量和多變量情況下的因果模型、
學習因果模型及其與機器學習的關係,討論了因果推理隱藏變量有關的問題、時間系列的因果分析。
本書可作為高等院校人工智能和電腦科學等相關專業高年級本科生和碩士研究生的教材,
也可供研究機器學習、因果推理的技術人員參考。
目錄大綱
譯者序
原書前言
符號和術語
第1章 統計和因果模型
1.1 概率論與統計學
1.2 學習理論
1.3 因果建模和學習
1.4 兩個實例
1.4.1 模式識別
1.4.2 基因乾擾
第2章 因果推斷假設
2.1 獨立機制原則
2.2 歷史記錄
2.3 因果模型的物理結構
2.3.1 時間的作用
2.3.2 物理定律
2.3.3 循環賦值
2.3.4 乾預的可行性
2.3.5 原因和機制的獨立性以及時間的熱力學之箭
第3章 原因-效果模型
3.1 結構因果模型
3.2 乾預
3.3 反事實
3.4 結構因果模型的標準表示
3.5 問題
第4章 學習原因-效果模型
4.1 結構可識別性
4.1.1 為什麼需要額外的假設
4.1.2 假設類型的概述
4.1.3 非高斯加性噪聲的線性模型
4.1.4 非線性加性噪聲模型
4.1.5 離散加性噪聲模型
4.1.6 後非線性模型
4.1.7 信息-幾何因果推斷
4.1.8 Trace方法
4.1.9 以演算法信息論為可能的基礎
4.2 結構識別方法
4.2.1 加性噪聲模型
4.2.2 信息幾何因果推斷
4.2.3 Trace方法
4.2.4 監督學習方法
4.3 問題
第5章 與機器學習的聯繫1
5.1 半監督學習
5.1.1 半監督學習和因果方向
5.1.2 關於半監督學習在因果方向上的註釋
5.2 協變量偏移
5.3 問題
第6章 多變量因果模型…
6.1 圖的術語
6.2 結構因果模型
6.3 乾預
6.4 反事實
6.5 瑪律可夫性、忠實性和因果小性
6.5.1 瑪律可夫性
6.5.2 因果圖模型
6.5.3 忠實性和因果小性
6.6 通過協變量調整計算乾預分佈
6.7 do-calculus
6.8 因果模型的等價性和可證偽性
6.9 潛在的結果
6.9.1 定義與實例
6.9.2 潛在的結果與結構因果模型之間的關係
6.10 單一物件的廣義結構因果模型
6.11 條件演算法獨立性
6.12 問題
第7章 學習多變量因果模型
7.1 結構可識別性
7.1.1 忠實性
7.1.2 加性噪聲模型
7.1.3 具有等誤差方差的線性高斯模型
7.1.4 線性非高斯無環模型
7.1.5 非線性高斯加性噪聲模型
7.1.6 觀測資料和實驗資料
7.2 結構識別方法
7.2.1 基於獨立的方法
7.2.2 基於分數的方法
7.2.3 加性噪聲模型
7.2.4 已知因果次序
7.2.5 觀測資料與實驗資料
7.3 問題
第8章 與機器學習的聯繫2
8.1 半同胞回歸
8.2 因果推斷與場景強化學習
8.2.1 逆概率加權
8.2.2 場景強化學習
8.2.3 21點(Blackjack)中的狀態簡化
8.2.4 改進廣告佈置的加權
8.3 域適應
8.4 問題
第9章 隱藏變量
9.1 乾預充分性
9.2 Simpson悖論
9.3 工具變量
9.4 條件獨立性和圖表示
9.4.1 圖
9.4.2 快速因果推斷
9.5 條件獨立性之外的約束
9.5.1 Verma約束
9.5.2 不等式約束
9.5.3 基於協方差的約束
9.5.4 附加噪聲模型
9.5.5 檢測低複雜度混雜因子
9.5.6 不同的環境
9.6 問題
第10章 時間序列
10.1 基礎和術語
10.2 結構因果模型和乾預
10.2.1 下採樣
10.3 學習因果時間序列模型
10.3.1 瑪律可夫條件和忠實性
10.3.2 一些不要求忠實性的因果結論
10.3.3 Granger因果關係
10.3.4 具有受限函數類的模型
10.3.5 頻譜獨立準則
10.4 動態因果建模
10.5 問題
附錄
附錄A 一些概率與統計學基礎知識
A.1 基本定義
A.2 獨立性以及條件獨立性測試
A.3 函數類的容量
附錄B 因果次序和鄰接矩陣
附錄C 證明
C.1 定理4.2的證明
C.2 命題6.3的證明
C.3 備註6.6的證明
C.4 命題6.13的證明
C.5 命題6.14的證明
C.6 命題6.36的證明
C.7 命題6.48的證明
C.8 命題6.49的證明
C.9 命題7.1的證明
C.10 命題7.4的證明
C.11 命題8.1的證明
C.12 命題8.2的證明
C.13 命題9.3的證明
C.14 命題10.3的證明
C.15 定理10.4的證明
參考文獻
