自己動手做推薦引擎
[印]蘇雷什·庫馬爾·戈拉卡拉(Suresh Kumar Gorakala) 著
- 出版商: 機械工業
- 出版日期: 2019-12-01
- 定價: $474
- 售價: 8.5 折 $403
- 語言: 簡體中文
- ISBN: 7111641086
- ISBN-13: 9787111641087
-
相關分類:
推薦系統
- 此書翻譯自: Building Recommendation Engines
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$221數學之美, 2/e
-
$505圖解Spark:核心技術與案例實戰
-
$780$616 -
$450AWS Lambda 實戰 : 開發事件驅動的無服務器應用程序 (AWS Lambda in Action: Event-Driven Serverless Applications)
-
$254亞馬遜 AWS 雲基礎與實戰
-
$352關聯數據:萬維網上的結構化數據
-
$356推薦系統實踐
-
$474Elasticsearch 實戰 (Elasticsearch in Action)
-
$480$379 -
$301特徵工程入門與實踐 (Feature Engineering Made Easy)
-
$450推薦系統開發實戰
-
$534推薦系統算法實踐
-
$469推薦系統
-
$560$442 -
$327Python數據預處理技術與實踐
-
$650$507 -
$690$545 -
$1,200$948 -
$534CSS3 藝術 網頁設計案例實戰
-
$780$616 -
$454從零開始構建企業級推薦系統
-
$780$616 -
$450$356 -
$620$527 -
$658構建企業級推薦系統:算法、工程實現與案例分析
初夏簡體電腦展2書75折 詳見活動內容 »
-
79折
$284一本書玩轉 DeepSeek -
VIP 95折
$774$735 -
79折
$379AI全能助手 人人都能玩轉DeepSeek -
$834射頻微電子學 (原書第二版)
-
VIP 95折
$359$341 -
VIP 95折
$419$398 -
79折
$378DeepSeek 極速上手 : 高效做事不內耗 -
85折
$250DeepSeek 應用能手 : 7天從入門到精通 -
VIP 95折
$359$341 -
VIP 95折
$659$626 -
VIP 95折
$599$569 -
VIP 95折
$359$341 -
VIP 95折
$324$308 -
VIP 95折
$299$284 -
VIP 95折
$419$398 -
85折
$305DeepSeek公文寫作一本通 -
85折
$152AI 導航式提問法 : 用好 DeepSeek 與元寶的高效提問手冊 -
85折
$403DeepSeek全場景應用 -
85折
$45424小時精通 AI Agent (快速定製你的智能體) -
79折
$378Joy RL:強化學習實踐教程 -
85折
$357大模型應用開發極簡入門(基於DeepSeek雙色版) -
VIP 95折
$774$735 -
VIP 95折
$594$564 -
VIP 95折
$588$559 -
VIP 95折
$534$507
相關主題
商品描述
本書是一本推薦引擎技術的綜合入門指南,詳細介紹使用R、Python、Spark、Mahout、Neo4j技術實現諸如協同過濾、基於內容的推薦引擎和情境感知推薦引擎等內容。本書也介紹了行業內廣泛使用的各種推薦引擎及其實現。此外,本書還涵蓋一些推薦引擎中常用的流行數據挖掘技術,並在最後簡要討論了推薦引擎的未來方向。
本書適合想要使用R、Python、Spark、Neo4j和Hadoop構建復雜預測決策系統及推薦引擎的初學者和有經驗的數據科學家閱讀。
推薦引擎(有時也稱為推薦系統)是一個能讓算法開發者預測用戶會喜歡或不喜歡給定項目列表中項目的工具。它在最近幾年得到了廣泛應用。
本書首先介紹推薦引擎及其應用,然後循序漸進地講解如何使用R、Python、Spark、Neo4j和Hadoop等流行框架構建推薦系統。通過本書,你會瞭解到每種推薦引擎的利弊以及何時使用它們,也將學會創建簡單的推薦引擎、實時推薦引擎和可擴展推薦引擎等。
通過閱讀本書,你將學會:
·構建你的第一個推薦引擎
·瞭解構建推薦引擎所需的工具
·鑽研推薦系統的各種技術,如協同過濾、基於內容及交叉推薦
·創建減輕你工作負擔的高效決策系統
·熟悉不同框架中的機器學習算法
·通過實際代碼示例精通不同版本的推薦引擎
·探索各種推薦系統並通過流行技術(如R、Python、Spark等)實現它們
本書適合想要使用R、Python、Spark、Neo4j和Hadoop構建復雜預測決策系統及推薦引擎的初學者和有經驗的數據科學家閱讀。
推薦引擎(有時也稱為推薦系統)是一個能讓算法開發者預測用戶會喜歡或不喜歡給定項目列表中項目的工具。它在最近幾年得到了廣泛應用。
本書首先介紹推薦引擎及其應用,然後循序漸進地講解如何使用R、Python、Spark、Neo4j和Hadoop等流行框架構建推薦系統。通過本書,你會瞭解到每種推薦引擎的利弊以及何時使用它們,也將學會創建簡單的推薦引擎、實時推薦引擎和可擴展推薦引擎等。
通過閱讀本書,你將學會:
·構建你的第一個推薦引擎
·瞭解構建推薦引擎所需的工具
·鑽研推薦系統的各種技術,如協同過濾、基於內容及交叉推薦
·創建減輕你工作負擔的高效決策系統
·熟悉不同框架中的機器學習算法
·通過實際代碼示例精通不同版本的推薦引擎
·探索各種推薦系統並通過流行技術(如R、Python、Spark等)實現它們