MATLAB 機器學習:人工智能工程實踐, 2/e
Michael Paluszek , Stephanie Thomas 陳建平譯
- 出版商: 機械工業
- 出版日期: 2020-03-01
- 定價: $534
- 售價: 8.5 折 $454
- 語言: 簡體中文
- 頁數: 301
- 裝訂: 平裝
- ISBN: 7111646770
- ISBN-13: 9787111646778
-
相關分類:
Machine Learning、Matlab
- 此書翻譯自: MATLAB Machine Learning Recipes: A Problem-Solution Approach, 2/e (Paperback)
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$245時間序列分析及應用 : R語言, 2/e (Time Series Analysis With Applications in R, 2/e) -
$534MATLAB/Simulink 系統模擬 -
$505數據挖掘:實用機器學習工具與技術 (Data Mining : Practical Machine Learning Tools and Techniques, 4/e) -
$214模糊控制及其 MATLAB 模擬, 2/e -
$505ROS 機器人開發實踐 -
$301深度學習 : 基於 MATLAB 的設計實例 (Deep Learning for Beginners: with MATLAB Examples) -
$301機器學習入門到實戰 — MATLAB 實踐應用 -
最成熟 AI套件之實作:MatLab 人工智慧工具書 (熱銷版)(二版)$550$468 -
$534MATLAB/Simulink 系統模擬超級學習手冊, 2/e -
$352MATLAB 機器學習 (MATLAB for Machine Learning) -
深度學習 -- 從入門到實戰 (使用 MATLAB)(附範例光碟)$460$414 -
$500時間序列分析與預測 -
$403深度學習理論及實戰 (MATLAB 版) -
$559基於 MATLAB 的人工智能模式識別 -
$352MATLAB 神經網絡 43個案例分析 -
$505深度學習經典案例解析(基於MATLAB) -
$473人工智能算法大全 :基於 MATLAB -
$422MATLAB 智能優化算法:從寫代碼到算法思想 -
$199Matlab / Simulink 動力學建模與控制模擬實例分析 -
圖解資料結構 × 演算法:運用 C語言$600$468 -
神經網絡與深度學習 — 基於 MATLAB 的模擬與實現$534$507 -
$296機器學習 (MATLAB版) -
MATLAB 數值計算 (2022修訂版)$594$564 -
$301MATLAB 智能算法 30個案例分析, 2/e -
深度學習理論及實戰(MATLAB版·第2版)$594$564
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
本書是關於在MATLAB中使用實例進行機器學習的綜合指南。
書中概述了人工智能與自動控制的歷史;回顧了用於機器學習的商用軟件包,
並展示了它們如何應用於該領域;接著展示瞭如何使用MATLAB來解決機器學習問題,
以及如何利用MATLAB圖形技術來增強程序員對機器學習結果的理解。
本書隨書提供了機器學習中若乾重要問題的MATLAB完整解決方案,
包括飛行控制、人臉識別、自動駕駛。
書中所有的示例和應用程序都提供了完整的源代碼。
機器學習包含大量的數學概念與理論解釋。
書中以清晰簡潔的方式介紹了其中每個領域的數學知識,
即使是並不經常接觸數學理論的讀者也可以輕鬆理解。
工程領域的讀者會看到這些數學知識與他們已經瞭解的領域技術之間的密切聯繫,
並將學習到新的技術。
本書主要內容:
l 如何使用MATLAB構建機器學習應用
l 適用於機器學習的MATLAB可視化技術
l 面向工程的機器學習應用案例
作者簡介
Michael Paluszek
普林斯頓衛星系統公司(PSS)總裁,為美國宇航局和軍方提供航空航天諮詢服務和MATLAB航天器控制工具箱。
他在航空航天領域具有20多年的工作經歷,之前作為GE公司宇航部門專家曾參與多個美國航空航天項目。
他擁有麻省理工學院電氣工程學士學位、航空航天學碩士學位,
曾發表了很多論文,擁有十多項美國專利。
他是Apress出版社出版的《MATLAB與機器學習》的合著者。
Stephanie Thomas
普林斯頓衛星系統公司副總裁。
她擁有麻省理工學院航空航天學士學位和碩士學位。
她一直從事航空航天項目分析和諮詢工作,
曾參與了普林斯頓衛星系統公司公司MATLAB航天器控制工具箱研發項目。
她曾因“核聚動力冥王星軌道探測和登陸器”入選美國太空總署創新資助項目,
被任命為美國太空總署NIAC研究員。
她也是Apress出版的《MATLAB與機器學習》的合著者。
◆ 譯者簡介◆
陳建平
MathWorks公司中國區的技術諮詢專家,專註於工程大數據分析和高性能計算領域,擁有北京大學學士和碩士學位。
加入MathWorks後,專註於通信系統和工程數據分析;
深入探索工程數據在大數據領域的應用。
他擁有十餘年數值算法設計、實現,以及對大規模工程數據分析和建模經驗;
尤其對MATLAB與不同編程語言,
以及Hadoop和Spark等大數據架構的結合有較為深入的研究。
目錄大綱
序
譯者序
前言
作者簡介
第1章機器學習概述
1.1引言
1.2機器學習基礎
1.3學習機
1.4機器學習分類體系
1.5控制
1.6自主學習方法
1.7人工智能
1.8小結
第2章用於機器學習的MATLAB數據類型
2.1 MATLAB數據類型概述
2.2使用參數初始化數據結構
2.3在圖像datastore上執行mapreduce
2.4從文件中創建表格
2.5處理表格數據
2.6使用MATLAB字符串
2.7小結
第3章MATLAB作圖
3.1二維線圖
3.2通用二維作圖
3.3定製二維圖表
3.4三維盒子
3.5用紋理繪製三維對象
3.6通用三維作圖
3.7構建圖形用戶界面
3.8柱狀圖動畫
3.9畫一個機器人
3.10小結
第4章卡爾曼濾波
4.1用線性卡爾曼濾波器實現的狀態估計器
4.2使用擴展卡爾曼濾波器進行狀態估計
4.3使用無跡卡爾曼濾波器進行狀態估計
4.4使用無跡卡爾曼濾波器進行參數估計
4.5小結
第5章自適應控制
5.1自調諧:振盪器建模
5.2自調諧:調校振盪器
5.3模型參考自適應控制的實現
5.4創建方波輸入
5.5轉子的MRAC演示
5.6輪船駕駛:實現輪船駕駛控制的增益調度
5.7航天器的指向
5.8小結
第6章模糊邏輯
6.1構建模糊邏輯
6.2模糊邏輯的實現
6.3演示模糊邏輯
6.4小結
第7章用決策樹進行數據分類
7.1生成測試數據
7.2繪製決策樹
7.3決策樹的算法實現
7. 4創建決策樹
7.5手工創建決策樹
7.6訓練和測試決策樹
7.7小結
第8章神經網絡入門
8.1日光檢測器
8.2單擺建模
8.3單神經元角度估計器
8.4為單擺設計神經網絡
8.5小結
第9章基於神經網絡的數字分類
9.1生成帶噪聲的測試圖像
9.2創建神經網絡函數
9.3訓練單一輸出節點的神經網絡
9 .4測試神經網絡
9.5訓練多輸出節點的神經網絡
9.6小結
第10章基於深度學習的模式識別
10.1為訓練神經網絡在線獲取數據
10.2產生貓的訓練圖像集
10.3矩陣捲積
10. 4捲積層
10.5池化層
10.6全連接層
10.7確定輸出概率
10.8測試神經網絡
10.9識別數字
10.10識別圖像
10.11小結
第11章用於飛機控制的神經網絡
11.1縱向運動
11.2利用數值方法尋找平衡狀態
11.3飛機的數值模擬
11.4激活函數
11.5學習控制的神經網絡
11.6枚舉數據集
11.7編寫sigma-pi神經網絡函數
11.8實現PID控制器
11.9飛機俯仰角PID控制
11.10創建俯仰動力學的神經網絡
11.11非線性模擬中的控制器演示
11.12小結
第12章多重假設檢驗
12 .1概覽
12.2理論
12.3追蹤臺球的卡爾曼濾波器
12.4追蹤臺球的MHT
12.5一維運動
12.6軌道關聯的一維運動
12.7小結
第13章基於多重假設檢驗的自動駕駛
13.1汽車動力學
13.2汽車雷達建模
13.3汽車的自主車控制
13.4汽車動畫
13.5汽車模擬與卡爾曼濾波器
13.6汽車目標追蹤
13.7小結
第14章基於案例的專家
14.1構建專家
14.2運行專家
14.3小結
附錄A自主學習的歷史
附錄B機器學習軟件
參考文獻
中英文術語對照表
