Python深度學習:邏輯、算法與編程實戰
何福貴
- 出版商: 機械工業
- 出版日期: 2020-08-01
- 定價: $714
- 售價: 7.9 折 $564
- 語言: 簡體中文
- 頁數: 374
- 裝訂: 平裝
- ISBN: 7111658612
- ISBN-13: 9787111658610
-
相關分類:
DeepLearning、Python
立即出貨
買這商品的人也買了...
-
$301Node.js實戰(第2季) -
$403AWS Lambda 實戰 : 開發事件驅動的無服務器應用程序 (AWS Lambda in Action: Event-Driven Serverless Applications) -
$254亞馬遜 AWS 雲基礎與實戰 -
$352關聯數據:萬維網上的結構化數據 -
大數據時代一定要會的 SQL 商業資料分析術$680$578 -
$474RxJava 2.x 實戰 -
$239卡爾曼濾波原理及應用:MATLAB 模擬 -
Github 創辦人親自指導你精通 Git (Pro Git, 2/e)$680$578 -
$474Java 編程方法論:響應式 RxJava 與代碼設計實戰 -
$454Python 3 反爬蟲原理與繞過實戰 -
$469Python 計算與編程實踐 多媒體方法, 4/e (Introduction to Computing and Programming in Python, 4/e) -
$768AWS 高級網絡官方學習指南 (專項領域) (AWS Certified Advanced Networking Official Study Guide: Specialty Exam) -
$347基於Python的語料庫數據處理 -
$322深度學習算法與實踐 -
$301自然語言處理與計算語言學 -
$509R語言醫學數據分析實戰 -
$275Python基礎與深度學習實戰 -
Python 資料可視化之美:極專業圖表製作高手書 (書況差限門市銷售)$780$399 -
Python 機器學習超進化:AI影像辨識跨界應用實戰 (附100分鐘影像處理入門影音教學/範例程式)$450$356 -
$602反應式編程實戰 使用 RxJava 2.x 開發 Android 應用 (RxJava for Android Developers: with ReactiveX and FRP) -
$352RPA (流程自動化機器人) 入門 — 手把手教你應用 UiPath 自動化工作 -
深度強化式學習 (Deep Reinforcement Learning in Action)$1,000$790 -
最踏實 AI 之路:全白話機器學習一次搞懂$780$616 -
$474人工智能算法 -
$352Python 深度強化學習 — 使用 PyTorch, TensorFlow 和 OpenAI
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$576 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
機器學習是人工智能領域一個J其重要的研究方向,而深度學習則是機器學習中一個FC接近AI的分支,
其思路在於建立進行分析學習的神經網絡,模仿人腦感知與組織的方式,根據輸入數據做出決策。
深度學習在快速的發展過程中,不斷有與其相關的產品推向市場,顯然,深度學習的應用將會日趨廣泛。
《Python深度學習:邏輯、算法與編程實戰》是關於深度學習的理論、算法、應用的實戰教程,
內容涵蓋深度學習的語言、學習環境、典型結構、數據爬取和清洗、圖像識別分類、
自然語言處理、情感分析、機器翻譯、目標檢測和語音處理等知識,通過各種實例,
讀者能瞭解、掌握深度學習的整個流程和典型應用。
《Python深度學習:邏輯、算法與編程實戰》可作為深度學習相關從業人員的參考指南,
也可作為大中專院校人工智能相關專業的教材,還可作為廣大人工智能愛好者的拓展學習手冊。
目錄大綱
目錄
前言
D1章 Python語言基礎
1.1 Python簡介
1.2 Python開發環境
1.2.1 PyCharm的下載和安裝
1.2.2 PyCharm的使用
1.2.3 樹莓派Python IDLE的使用
1.3 Python基本語法
1.3.1 保留字和標識符
1.3.2 變量和數據類型
1.3.3 基本控制結構
1.3.4 運算符
1.3.5 函數
1.3.6 with語句
1.3.7 字符串操作
1.3.8 異常處理
1.4 Python序列
1.4.1 列表
1.4.2 元組
1.4.3 字典
1.4.4 集合
1.4.5 列表、元組、字典和集合的區別
1.5 Python操作文件
1.5.1 操作文本文件
1.5.2 操作目錄
1.5.3 操作Excel文件
1.5.4 操作CSV文件
1.6 Python模塊
1.6.1 模塊分類
1.6.2 自定義模塊
1.6.3 D三方模塊的安裝
1.7 Python類
1.7.1 面向對象概述
1.7.2 類和對象
1.7.3 面向對象程序設計方法
1.7.4 類的定義和使用
1.7.5 多線程
1.8 本章小結
D2章 Python操作數據庫及Web框架
2.1 操作數據庫
2.1.1 操作SQLite
2.1.2 操作MySQL
2.2 Web框架
2.2.1 主流Web框架
2.2.2 Django框架
2.2.3 Flask框架
2.3 本章小結
D3章 Python深度學習環境
3.1 Anaconda介紹
3.2 Anaconda環境搭建
3.3 Anaconda使用方法
3.3.1 管理工具Navigator
3.3.2 Anaconda的Python開發環境Spyder
3.4 深度學習的一些常備庫
3.4.1 NumPy—基礎科學計算庫
3.4.2 SciPy—科學計算工具集
3.4.3 Pandas—數據分析的利器
3.4.4 Matplotlib—畫出優美的圖形
3.4.5 Tqdm—Python 進度條庫
3.5 機器學習通用庫Sklearn
3.5.1 Sklearn的安裝
3.5.2 Sklearn的數據集
3.5.3 Sklearn的機器學習方式
3.6 機器學習深度庫TensorFlow
3.6.1 TensorFlow的安裝
3.6.2 TensorFlow的深度學習方式
3.6.3 TensorLayer
3.6.4 可視化工具TensorBoard
3.7 機器學習深度庫Keras
3.7.1 Keras的安裝
3.7.2 Keras的深度學習方式
3.8 自然語言處理
3.8.1 NLTK
3.8.2 SpaCy
3.8.3 Gensim
3.9 視覺OpenCV
3.9.1 OpenCV的安裝
3.9.2 OpenCV的使用
3.10 其他深度學習框架
3.10.1 PyTorch
3.10.2 TFLearn
3.10.3 Chainer
3.10.4 TheaD
3.11 本章小結
D4章 深度學習典型結構
4.1 人工智能、機器學習、神經網絡和深度學習的關係
4.2 深度學習的發展歷程
4.3 深度學習的應用
4.3.1 計算機視覺
4.3.2 語音識別
4.3.3 自然語言處理
4.3.4 人機博弈
4.4 神經網絡
4.4.1 神經網絡的結構
4.4.2 神經網絡的算法
4.4.3 神經網絡的訓練
4.4.4 神經網絡的參數
4.4.5 深度學習與深層神經網絡
4.5 捲積神經網絡(CNN)
4.5.1 捲積神經網絡結構
4.5.2 經典捲積網絡模型
4.5.3 捲積神經網絡應用
4.6 循環神經網絡(RNN)
4.6.1 循環神經網絡結構
4.6.2 長短期記憶網絡(LSTM)
4.6.3 循環神經網絡改進
4.6.4 循環神經網絡應用
4.7 遞歸神經網絡(RNN)
4.7.1 遞歸神經網絡結構
4.7.2 遞歸神經網絡應用
4.8 生成對抗網絡(GAN)
4.8.1 生成對抗網絡原理
4.8.2 生成對抗網絡架構
4.8.3 生成對抗網絡應用
4.8.4 生成對抗網絡變種
4.9 本章小結
D5章 深度學習數據準備—數據爬取和清洗
5.1 爬蟲框架
5.1.1 Crawley爬蟲框架
5.1.2 Scrapy爬蟲框架
5.1.3 PySpider爬蟲框架
5.1.4 Beautiful Soup爬蟲框架
5.2 數據爬取
5.2.1 Urllib3爬取
5.2.2 Requests爬取
5.2.3 Scrapy框架爬取
5.2.4 實例—爬取招聘wz職位信息
5.2.5 實例—爬取wz指定的圖片集合
5.2.6 實例—爬取二手車市場數據
5.3 數據清洗
5.3.1 數據清洗庫Pandas
5.3.2 缺失值處理
5.3.3 去重處理
5.3.4 異常值處理
5.3.5 實例—清洗CSV文件
5.3.6 噪聲數據處理
5.3.7 實例—天氣數據分析與處理
5.4 數據顯示
5.4.1 Pandas統計分析
5.4.2 Matplotlib繪圖
5.4.3 Bokeh繪圖
5.4.4 Pyecharts繪圖
5.5 實例—爬取並保存圖片
5.6 本章小結
D6章 圖像識別分類
6.1 圖像識別分類簡介
6.2 經典圖片數據集
6.2.1 MNIST數據集
6.2.2 CIFAR-10數據集
6.2.3 ImageNet數據集
6.2.4 LFW人臉數據庫
6.2.5 Flowers-17數據集
6.2.6 Pascal VOC數據集
6.2.7 MS COCO 數據集
6.3 OpenCV識別
6.3.1 實例—人眼識別
6.3.2 實例—兩張相似圖片識別
6.3.3 實例—性別識別
6.4 VGGNet花朵識別
6.4.1 VGGNet介紹
6.4.2 花朵數據庫
6.4.3 實例—花朵識別
6.5 車牌識別
6.5.1 利用OpenCV實現車牌識別
6.5.2 實例—EasyPR車牌識別
6.6 Inception圖像分類處理
6.6.1 Inception模型簡介
6.6.2 實例—花朵和動物識別
6.6.3 實例—自定義圖像分類
6.7 本章小結
D7章 自然語言處理
7.1 自然語言處理的典型工具
7.1.1 NLTK
7.1.2 TextBlob
7.1.3 Gensim
7.1.4 Polyglot
7.2 Jieba實現關鍵詞抽取
7.2.1 Jieba實現詞性標註
7.2.2 基於TF-IDF算法的關鍵詞抽取
7.2.3 基於TextRank算法的關鍵詞抽取
