買這商品的人也買了...
-
Nonlinear Optimization (Hardcover)$1,350$1,323 -
$403深度學習理論及實戰 (MATLAB 版) -
$454MATLAB R2020a 神經網絡典型案例分析
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$576 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
《MATLAB 2020智能算法從入門到精通》以MATLAB 2020為基礎,
結合作者團隊的教學經驗,講解智能算法的各種方法和技巧。
本書主要內容包括MATLAB入門、MATLAB基礎知識、插值算法、擬合算法、圖與網絡算法、有向圖算法、機器學習與深度學習算法、
圖像的複原算法、粒子群*小值算法以及多目標優化算法等。
本書覆蓋數學計算的各個方面,實例豐富而典型,指導讀者有的放矢地進行學習。
《MATLAB 2020智能算法從入門到精通》既可作為初學者的入門用書,也可作為工程技術人員、本科生、研究生的參考書或教材。
目錄大綱
前言
第1章 MATLAB入門
1.1 啟動MATLAB
1.2 MATLAB 2020的操作環境
1.2.1 功能區
1.2.2 工具欄
1.2.3 命令行窗口
1.2.4 命令歷史記錄窗口
1.2.5 當前文件夾窗口
1.2.6 工作區窗口
1.2.7 圖形窗口
1.2.8 文件管理
1.2.9 使用幫助
1.3 數據類型
1.3.1 變量與常量
1.3.2 數據的顯示格式
1.3.3 算術運算符
1.3.4 數據類型函數
第2章 MATLAB基礎知識
2.1 MATLAB基本運算
2.1.1 向量
2.1.2 矩陣的生成
2.2 可視化繪圖
2.2.1 figure命令
2.2.2 subplot命令
2.2.3 plot繪圖命令
2.2.4 圖形註釋
2.3 圖像的基本操作
2.3.1 圖像讀入
2.3.2 圖像的顯示
第3章 插值算法
3.1 插值問題
3.1.1 插值算法概述
3.1.2 線性插值
3.2 基本插值計算
3.2.1 插值算法分類
3.2.2 一次插值函數
3.2.3 二次插值
3.3 多項式插值法
3.3.1 計算插值多項式
3.3.2 計算多項式插值
3.4 常用多項式插值
3.4.1 拉格朗日(Lagrange)插值
3.4.2 牛頓(Newton)插值
3.4.3 埃爾米特(Hermite)插值
3.5 分段插值
3.5.1 龍格函數
3.5.2 分段線性插值
3.5.3 分段三次(埃爾米特)插值
3.6 三次樣條插值
3.6.1 樣條曲線
3.6.2 三次樣條插值
3.7 二次、三次混合插值
3.7.1 半無限規劃
3.7.2 二次、三次混合插值函數
第4章 擬合算法
4.1 擬合問題
4.1.1 插值算法與擬合算法
4.1.2 曲線擬合問題
4.1.3 求解擬合曲線步驟
4.2 最小二乘法
4.2.1 線性最小二乘法
4.2.2 加權最小二乘法
4.2.3 魯棒最小二乘法
4.2.4 非線性最小二乘法
4.3 數據擬合
4.3.1 擬合模型
4.3.2 擬合類型
4.3.3 擬合算法
4.3.4 數據擬合
4.3.5 擬合後處理
4.4 線性擬合
4.4.1 線性擬合函數
4.4.2 一元線性組合函數擬合
4.5 多項式擬合
4.5.1 擬合多項式
4.5.2 多項式擬合預測值
4.5.3 多項式擬合工具
4.5.4 曲線擬合工具
第5章 圖與網絡算法
5.1 圖
5.1.1 繪製方向圖
5.1.2 繪製子圖
5.2 圖的外觀設置
5.2.1 圖屬性設置
5.2.2 圖的標註
5.3 圖的遍曆算法
5.3.1 廣度優先搜索算法
5.3.2 深度優先搜索算法
5.3.3 算法應用1
5.3.4 算法應用2
5.4 可達性算法
5.4.1 算法概述
5.4.2 連通圖
5.4.3 連通分量
5.4.4 雙連通圖分量
5.4.5 可達矩陣
5.4.6 算法應用1
5.4.7 算法應用2
5.5 PageRank 算法
5.5.1 算法概述
5.5.2 算法基本原理
5.5.3 算法函數
5.5.4 算法應用
第6章 有向圖算法
6.1 數據結構
6.1.1 鄰接矩陣
6.1.2 關聯矩陣
6.2 圖的分類
6.2.1 繪製自環圖
6.2.2 繪製加權圖
6.2.3 圖的佈局
6.3 最大流算法
6.3.1 算法原理
6.3.2 算法函數
6.3.3 算法應用
6.4 最小生成樹算法
6.4.1 算法原理
6.4.2 算法函數
6.4.3 算法應用
6.5 圖的最短路徑算法
6.5.1 最短路徑定義
6.5.2 全局最短路徑
6.5.3 起點終點的最短路徑
6.5.4 算法應用
第7章 機器學習與深度學習算法
7.1 機器學習
7.1.1 機器學習算法
7.1.2 機器學習應用
7.2 神經網絡
7.2.1 神經網絡基礎
7.2.2 深度學習典型網絡模型
7.2.3 深度學習算法
7.3 深度神經網絡計算
7.3.1 神經網絡優化算法
7.3.2 反向傳播
7.3.3 神經網絡層
7.3.4 激勵函數
7.3.5 預訓練模型
7.4 梯度下降算法
7.4.1 梯度下降算法分類
7.4.2 隨機梯度下降算法
7.5 梯度下降算法基本函數
7.5.1 算法設置
7.5.2 網絡訓練樣本
7.5.3 神經網絡分類
7.5.4 網絡預測
7.5.5 深度網絡設計器
7.6 算法應用
第8章 圖像的複原算法
8.1 圖像的退化
8.1.1 圖像退化的原因
8.1.2 圖像退化的數學模型
8.2 圖像的複原
8.2.1 圖像的複原模型
8.2.2 圖像復原方法
8.2.3 復原方法的評估
8.3 圖像的複原算法
8.3.1 維納濾波
8.3.2 圖像線性濾波
8.3.3 正規則化濾波
8.3.4 Lucy-Richardson濾波
第9章 粒子群最小值算法
9.1 粒子群算法基礎
9.1.1 粒子群算法的發展
9.1.2 複雜適應系統
9.2 粒子群函數
9.2.1 算法參數設置
9.2.2 粒子群函數
9.3 算法應用
9.3.1 算法應用1
9.3.2 算法應用2
9.3.3 算法應用3
9.3.4 算法應用4
9.3.5 算法應用5
9.3.6 算法應用6
第10章 多目標優化算法
10.1 數學原理
10.2 基本函數
10.2.1 optimset函數
10.2.2 多目標規劃函數
10.3 算法應用
10.3.1 算法應用1
10.3.2 算法應用2
10.3.3 算法應用3
