自然語言處理導論
沈穎//丁寧等
- 出版商: 機械工業
- 出版日期: 2023-11-01
- 定價: $474
- 售價: 8.5 折 $403
- 語言: 簡體中文
- 頁數: 404
- 裝訂: 平裝
- ISBN: 7111736257
- ISBN-13: 9787111736257
-
相關分類:
Natural Language Processing
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$403自然語言處理理論與實戰 -
PyTorch 自然語言處理|以深度學習建立語言應用程式 (Natural Language Processing with PyTorch)$580$458 -
$374統計信號處理基礎:實用算法開發‧捲III -
$505自然語言處理實戰 : 利用 Python 理解、分析和生成文本 -
獨角獸專案|看IT部門如何引領百年企業振衰起敝,重返榮耀 (The Unicorn Project)$480$379 -
Crafting Interpreters (Paperback)$2,230$2,119 -
DevOps Handbook |打造世界級技術組織的實踐指南, 2/e (中文版) (The Devops Handbook: How to Create World-Class Agility, Reliability, & Security in Technology Organizations, 2/e)$650$514 -
$407自然語言處理遷移學習實戰 -
$1,270自然語言處理導論 -
Halliday & Resnick`s Principles of Physics, Extended, 12/e (IA)(Paperback) (書況有些許瑕疵,不介意在下單)$1,640$1,607 -
$422自然語言處理與應用 -
完全圖解人工智慧:零基礎也OK!從NLP、圖像辨識到生成模型,現代人必修的53堂AI課$480$379 -
$469自然語言處理原理與實戰 -
深度剖析 DeepSeek 大模型 : 原理開發與優化部署$714$678 -
$505多模態大模型:從理論到實踐 -
$357大模型應用開發極簡入門(基於DeepSeek雙色版) -
$3525G+智慧教育 -
深度學習最佳入門與專題實戰:自然語言處理、大型語言模型與強化學習篇$880$695 -
$534DeepSeek 圖解:大模型是怎樣構建的 -
大語言模型認識與應用$414$393 -
語言之舞:大語言模型應用實戰全書$594$564 -
大語言模型極速入門:技術與應用$474$450 -
大模型核心技術與應用 (微課視頻版)$474$450 -
AI 工程|從基礎模型建構應用 (AI Engineering : Building Applications with Foundation Models)$1,200$948 -
Physics for Scientists and Engineers & with Modern Physics, 11/e Custom Version (封膜不分售)$1,580$1,548
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
《自然語言處理導論》主要介紹自然語言處理理論與技術,
旨在讓更多人瞭解並學習自然語言處理技術,讓人工智能更能為我們服務。
《自然語言處理導論》共16章,包括自然語言理解基礎和具體任務探索兩部分,
主要講述了自然語言處理文本表示、分析、挖掘、推理等方面的相關概念、方法、技術和近期研究進展;
詳細介紹了文本分類、情感計算、知識抽取等基礎方法;
全面講述了自動文摘、問答系統、機器翻譯、社會計算、
內容生成和跨模態計算等具體任務;最後討論了深度學習前沿問題。
《自然語言處理導論》致力於幫助高等院校電腦相關專業學生牢固掌握自然語言處理的基本理論與技術,
掌握如何分析文本資訊、解決問題、完成相關研究的方法,以及瞭解自然語言處理的典型應用場景。
作者簡介
丁寧,清華大學博士,研究方向主要為自然語言處理和機器學習。相關研究成果發表在Nature Machine Intelligence、ACL、ICLR、EMNLP等期刊和會議上,曾經獲得ACL最佳系統展示論文、百度獎學金等獎項。
目錄大綱
前言
第1章緒論
1.1基本概念
1.1.1語言學與語音學
1.1.2自然語言
1.1.3自然語言處理
1.2自然語言處理的發展歷程
1.2.1自然語言處理的發展歷史
1.2.2自然語言處理的研究現況
1.2.3自然語言處理的發展前景
1.3自然語言處理的基本方法
1.3.1理性主義方法
1.3.2經驗主義方法
1.3.3對比分析
1.4自然語言處理的研究內容
1.4.1文本分類
1.4.2資訊擷取
1.4.3文本摘要
1.4.4智慧問答
第2章語言模型
2.1語言模型概述
2.2n-gram統計語言模型
2.2.1何為n-gram模型
2.2.2n-gram語言模型評估字序列
2.2.3n -gram統計語言模型的應用
2.2.4n-gram模型中n對表現的影響
2.2.5n-gram模型小結
思考題
參考文獻
第3章神經網絡與神經語言模型
3.1人工神經網絡與神經語言模型
3.1.1人工神經網絡
3.1.2神經語言模型
3.2捲積神經網絡
3.2.1捲積神經網絡結構
3.2.2捲積神經網絡的文本處理
3.3循環神經網絡
3.4遞迴神經網絡
3.4.1遞迴神經網絡的前向計算
3.4.2遞歸神經網絡的訓練方法
思考題
參考文獻
第4章詞與語意向量
4.1離散分佈表示
4.1.1獨熱表示法
4.1.2詞袋表示法
4.2分佈式表示
4.2.1Word2vec
4.2.2矩陣分解
4.2.3GloVe
4.3文本特徵選擇法
4.3.1基於文檔頻率的特徵提取法
4.3.2 χ2統計量
4.3.3資訊增益法
4.3.4互資訊法
4.4特徵權重計算方法
4.4.1布林權重
4.4.2絕對詞頻
4.4.3TF-IDF
思考題
參考文獻
第5章預訓練語言模型
5.1Transformer
5.2ELMo
5.3GPT
5.4BERT
5.5後BERT時代
思考題
參考文獻
第6章序列標註
6.1馬爾可夫模型
6.2條件隨機場、維特比演算法
6.2.1條件隨機場的原理解析
6.2.2條件隨機場的特性
6.3序列標註任務
6.3.1自動分詞
6.3.2漢語自動分詞中的基本問題
6.3.3歧義切分問題
6.3.4未登錄詞問題
6.4漢語分詞方法
6.4.1基於詞頻度統計的分詞方法
6.4.2N-最短路徑方法
6.4.3基於詞的n元語法模型的分詞方法
6.4.4由字構詞的漢語分詞方法
6.4.5基於詞感知機的漢語分詞方法
6.4.6基於字的生成式模型和區分式模型相結合的漢語分詞方法
6.4.7其他分詞方法
6.5詞性標註
6.5.1詞性標註概述
6.5.2基於規則的詞性標註方法
6.5.3基於統計模型的詞性標註方法
6.5.4統計方法與規則方法結合的詞性標註方法
6.5.5詞性標註的一致性檢查
6.5.6技術評測
6.6命名實體識別
6.6.1基於條件隨機場的命名實體辨識方法
6.6.2基於多特徵的命名實體辨識方法
6.6.3基於神經網絡的命名實體辨識方法…
