大數據智慧風控:模型、平臺與業務實踐
鄧甄 李欽
- 出版商: 機械工業
- 出版日期: 2024-06-06
- 定價: $594
- 售價: 7.9 折 $469
- 語言: 簡體中文
- 頁數: 246
- 裝訂: 平裝
- ISBN: 7111754565
- ISBN-13: 9787111754565
-
相關分類:
投資理財 Investment
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
唯一串流大數據處理平台 - Apache Kafka 動手做$580$493 -
$551深度學習推薦系統 -
Camunda 工作流開發實戰 — Spring Boot + BPMN + DMN$479$455 -
$422智能風控平臺:架構、設計與實現 -
$505從零構建知識圖譜 : 技術、方法與案例
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$576 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
內容介紹
這是一本深入講解智慧風控理論體系與風控全生命週期業務實務的著作。
作者基於銀行業10餘年的風控經驗,首先詳細講解了「大數據、模型、風控平臺」三位一體的智慧風控體系,
能為風控實踐提供紮實的理論指導;然後圍繞風控的全生命週期,
從貸前評估、貸中監控、貸後管理以及智慧反詐欺、
智慧催收等角度全面解說了智慧風控的業務實踐,深刻揭示了智慧風控體系的精髓。
第1~2章全面而深入地探討了智慧風控的背景知識:
首先對基礎信貸業務進行了細緻解析,讀者可以從中瞭解其運作方式和重要性;
然後,梳理了智慧風控是如何隨著技術的進步和市場的需求逐漸成熟和完善的。
第3~5章圍繞著「資料、模型、風控平臺」三位一體的智慧風控理論體系:
首先介紹了內部資料、外部資料、個人徵信資料在智慧風控的應用,以及智慧資料體系的建構;
接著深入探討了智慧風控模型的演算法、評估指標、開發流程;
最後講解了風控平臺的理論架構、設計原則、架構設計、建置流程、決策引擎的建置。
第6~8章圍繞風控的全生命週期探討了風控策略在實際業務中的應用,包括貸前評估、貸中監控、貸後管理,
以及智慧反詐欺和智慧催收體系的建構和業務實踐,能幫助讀者將理論知識轉化為實際操作能力,更好地應對現實業務中的挑戰。
第9章對智慧風控的未來發展進行了展望,不僅為讀者揭示了未來的機遇,也提供瞭如何應對未來挑戰的思考。
作者簡介
李欽,資深風控技術專家,現任重慶工程學院大數據與人工智能學院院長,曾任國內某知名民營銀行風險負責人、螞蟻科技集團風險專家。具備10餘年網絡信貸業務風險管理經驗,擅長大數據、人工智能技術在信用風險管理的應用。熟悉線上信貸業務的風險模型、風險策略開發,曾主導建設自主知識產權的智慧風控平臺,並作為專家成員參與中國人民銀行數碼化應用示範案例、小微企業客戶評級等標準的製定,多次獲得省會級獎勵。
目錄大綱
Contents 目 錄
前言
第1章 網絡信貸業務邏輯與風險1
1.1 網絡信貸業務1
1.1.1 網絡信貸的定義與範圍1
1.1.2 網絡信貸的業務模式3
1.1.3 網絡信貸業務監理演進8
1.1.4 網絡信貸業務的發展趨勢10
1.2 網絡信貸風險15
1.2.1 認識風險15
1.2.2 風險管理的組織架構與「三道防線」18
1.2.3 信貸風險管理流程19
1.2.4 大數據風控21
1.2.5 大數據風控管理原則22
1.3 本章小結26
第2章 大數據智能風控的由來27
2.1 金融科技的概念、發展及影響27
2.1.1 金融科技的概念28
2.1.2 金融科技的創新歷程29
2.1.3 金融科技的影響32
2.2 銀行數碼轉型33
2.2.1 銀行數碼轉型的內涵33
2.2.2 銀行數碼轉型的三大因素34
2.2.3 銀行數碼轉型的基本想法與對策36
2.3 從傳統風控到大數據智能風控38
2.3.1 風控1.0:傳統風控39
2.3.2 風控2.0:大數據風控40
2.3.3 風控3.0:大數據智慧風控41
2.4 大數據智能風控的內涵與建置42
2.4.1 大數據智慧風控的內涵42
2.4.2 大數據智慧風控的建置43
2.5 案例剖析46
2.5.1 經營原則:數據驅動策略46
2.5.2 全面應用大數據與人工智能技術47
2.5.3 打造一流的智慧風控體系48
2.5.4 對我國商業銀行的啟示48
2.6 本章小結49
第3章 大數據智能風控基礎:大數據50
3.1 大數據對商業銀行的影響50
3.1.1 大數據的特性51
3.1.2 大數據賦能53
3.2 內部數據54
3.3 外部資料56
3.3.1 外部資料分類57
3.3.2 外部資料來源的管理原則59
3.3.3 外部資料管理流程62
3.3.4 外部資料評估67
3.4 人行徵信69
3.4.1 人行徵信簡介70
3.4.2 人行徵信的歷史沿革70
3.4.3 人行徵信資料的主要來源71
3.4.4 二代徵信的主要改進73
3.4.5 人行徵信的業務實務77
3.5 智慧資料體系78
3.5.1 資料技術架構79
3.5.2 統一資料管理80
3.6 案例剖析82
3.7 本章小結86
第4章 大數據智能風控核心:模型87
4.1 模型的理論架構87
4.1.1 模型發展歷程88
4.1.2 模型的分類89
4.1.3 模型的特徵91
4.2 模型演算法92
4.2.1 邏輯迴歸演算法93
4.2.2 決策樹95
4.2.3 整合學習97
4.3 模型評估指標100
4.3.1 混淆矩陣100
4.3.2 評估指標101
4.4 模型開發流程105
4.4.1 模型定位105
4.4.2 資料處理106
4.4.3 樣本準備107
4.4.4 特徵變量評估111
4.4.5 模型訓練116
4.4.6 模型管理117
4.5 案例剖析118
4.6 本章小結120
第5章 大數據智慧風控載體:風控平臺121
5.1 風控平臺的理論架構121
5.1.1 風控平臺的內涵122
5.1.2 風控平臺建置的合規要求123
5.1.3 風控平臺建置的同業實務124
5.1.4 風控平臺的設計原則127
5.2 風控系統建置方案128
5.2.1 風控系統架構建置128
5.2.2 風控系統流程建置136
5.3 決策引擎建置方案140
5.3.1 決策引擎的內涵140
5.3.2 決策引擎的功能架構142
5.3.3 決策引擎的主要優點與應用143
5.3.4 決策引擎的核心組件145
5.4 本章小結149
第6章 風控策略應用151
6.1 風控策略的管理內涵151
6.1.1 模型與規則152
6.1.2 政策與策略152
6.1.3 策略體系的3種模式153
6.1.4 策略管理流程154
6.2 貸前策略應用實戰156
6.2.1 前置準入策略157
6.2.2 資訊驗證策略158
6.2.3 授信審批策略160
6.3 貸中策略應用實戰172
6.3.1 貸中策略架構173
6.3.2 貸中策略應用176
6.4 案例剖析179
6.5 本章小結181
第7章 智能反詐欺183
7.1 信用詐欺行為的內涵與特徵184
7.1.1 信貸詐欺特徵185
7.1.2 詐欺風險形成條件186
7.1.3 詐欺風險與信用風險187
7.2 揭秘黑產188
7.2.1 黑產上遊188
7.2.2 黑產中遊192
7.2.3 黑產下遊195
7.3 智慧反詐欺能力體系建置197
7.3.1 反詐欺底層能力建置197
7.3.2 反詐騙核心應用能力建構199
7.3.3 全面反詐騙工作流程206
7.4 案例剖析207
7.5 本章小結209
第8章 智能催收210
8.1 催收的內涵210
8.1.1 催收業務:保障債權權益與解決逾期問題210
8.1.2 催收管理哲學:平衡風險與獲利的關鍵211
8.1.3 催收合規化進展213
8.2 催收業務213
8.2.1 催收業務準備214
8.2.2 催收業務流程217
8.2.3 催收策略219
8.3 智慧催收體系223
8.3.1 智能催收體
