買這商品的人也買了...
-
$414R語言數據分析項目精解:理論、方法、實戰 -
$517R語言數據分析項目開發實戰 -
$275應用多元統計分析 (R語言版) -
$213R語言數據分析與數據挖掘應用(微課視頻版) -
$449R在語言科學研究中的應用 -
$611R語言機器學習實戰 -
$796R語言臨床預測模型實戰
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$576 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
本書系統地介紹了利用R 語言進行數據分析和挖掘的相關技術,
採用由淺入深的框架體系:開篇伊始介紹R 語言的基礎操作,
進而介紹回歸分析、方差分析等數據分析的方法,
以更好地探索數據內部結構,獲取數據所包含的信息;
更重要的是為後續的數據挖掘提供理論依據;
*後介紹典型數據挖掘工具和方法,採用理論基礎到算法介紹到案例實戰的佈局,
讓讀者深刻感知數據挖掘的精髓,在瞭解算法的同時更好地學以致用。
作者簡介
程靜
畢業於重慶大學,目前就職於西部估值最高的因特網公司豬八戒網,
擔任高級數據分析工程師,負責行業數據蒐集、整理、分析,
並依據數據做出行業研究、評估和預測,
擅長大數據分析及數據挖掘的各種算法熟練使用R語言及Python語言。
目錄大綱
第1 章R 語言簡介
1.1 R 語言軟件的安裝與運行.......................................... .................................................. .....1
1.1.1 R 語言軟件的安裝、啟動與關閉...................................... .....................................1
1.1.2 R 語言程輯包的安裝和使用...................................... ............................................4
1.2 R 語言的數據結構............................................ .................................................. ...............6
1.2.1 R 語言對象和類型.......................................... .................................................. .....6
1.2.2 向量.............................................. .................................................. ........................7
1.2.3 數組和矩陣............................................ .................................................. .............12
1.2.4 列表.............................................. .................................................. ......................17
1.2.5 數據框............................................. .................................................. ...................20
第2 章數據的讀取與保存
2.1 數據的讀取............................................. .................................................. .......................24
2.1.1 讀取內置數據集和文本文件....................................... .........................................24
2.1.2 讀取Excel 數據和CSV 格式的數據...................................... ..............................30
2.1.3 讀取R 語言格式數據和網頁數據...................................... ..................................33
2.1.4 讀取其他格式的數據......................................... .................................................. 34
2.2 數據保存............................................... .................................................. .........................36
2.2.1 寫出數據............................................ .................................................. ................36
2.2.2 使用函數cat().......................................... .................................................. ..........37
2.2.3 保存為R 語言格式文件......................................... ..............................................38
2.2.4 保存為其他類型文件.......................................... .................................................39
第3 章數據預處理
3.1 缺失值處理.............................................. .................................................. ......................40
3.1.1 缺失值判斷............................................ .................................................. .............40
3.1.2 缺失模型判斷............................................ .................................................. .........44
3.1.3 常用處理方法............................................ .................................................. .........48
3.2 數據整理............................................... .................................................. .........................53
3.2.1 數據合併............................................. .................................................. ...............53
3.2.2 選取子集............................................ .................................................. ................56
3.2.3 數據轉換............................................. .................................................. ...............59
第4 章數據的探索性分析
4.1 基本繪圖函數.............................................. .................................................. ..................66
4.2 探索單個變量.............................................. .................................................. ..................74
4.2.1 單組數據的圖形描述......................................... .................................................. 74
4.2.2 單組數據的描述性分析........................................ ...............................................79
4.3 探索多個變量............................................. .................................................. ...................81
4.3.1 兩組數據的圖形描述......................................... .................................................. 81
4.3.2 多組數據的圖形描述......................................... .................................................. 85
4.3.3 多組數據的描述性統計........................................ ...............................................88
4.4 其他圖像探索.............................................. .................................................. ..................90
第5 章回歸分析
5.1 一元線性回歸.............................................. .................................................. ..................94
5.1.1 模型簡介............................................. .................................................. ...............94
5.1.2 函數介紹............................................. .................................................. ...............96
5.1.3 綜合案例:iris 數據集的一元回歸建模.................................... ..........................97
5.2 多元線性回歸.............................................. .................................................. ..................99
5.2.1 模型簡介............................................. .................................................. ...............99
5.2.2 綜合案例:iris 數據集的多元回歸建模.................................... ........................100
5.3 變量的選擇.............................................. .................................................. ....................105
5.3.1 逐步回歸方法簡介及函數介紹........................................ ..................................105
5.3.2 綜合案例:swiss 數據集的逐步回歸建模.................................... .....................106
5.3.3 嶺回歸的方法簡介及函數介紹....................................... ...................................109
5.3.4 綜合案例:longley 數據集的嶺回歸探索..................................... .....................110
5.3.5 lasso 回歸方法簡介及函數介紹........................................ .................................114
5.3.6 綜合案例:longley 數據集的lasso 回歸建模.................................... ................115
5.4 Logistic 回歸............................................... .................................................. .................117
5.4.1 模型簡介............................................. .................................................. .............117
5.4.2 函數介紹............................................. .................................................. .............119
5.4.3 綜合案例:iris 數據集的邏輯回歸建模.................................... ........................120
第6 章方差分析
6.1 單因素方差分析............................................. .................................................. .............124
6.1.1 模型介紹............................................. .................................................. .............124
6.1.2 函數介紹............................................. .................................................. .............126
6.1.3 綜合案例:不同治療方法下膽固醇降低效果的差異性分析............................ 127
6.2 雙因素方差分析............................................. .................................................. .............130
6.2.1 模型介紹............................................. .................................................. .............130
6.2.2 綜合案例:不同劑量下老鼠妊娠重量的差異性分析.................................. ...... 132
6.3 協方差分析.............................................. .................................................. ....................136
6.3.1 模型簡介............................................. .................................................. .............136
6.3.2 函數介紹............................................. .................................................. .............136
6.3.3 綜合案例:hotdog 數據集的協方差分析..................................... ......................137
第7 章主成分分析和因子分析
7.1 降維的基本方法:主成分分析........................................ .............................................139
7.1.1 理論基礎:原始變量的線性組合....................................... ...............................139
7.1.2 模型介紹............................................. .................................................. .............141
7.1.3 函數介紹............................................. .................................................. .............143
7.1.4 綜合案例:longley 數據集的變量降維及回歸................................... ...............144
7.1.5 綜合案例:longley 數據集的變量降維及回歸(主成分回歸)....................... 148
7.2 推廣發展:因子分析............................................ .................................................. ......150
7.2.1 理論基礎:多個變量綜合為少數因子..................................... ..........................150
7.2.2 模型介紹............................................. .................................................. .............151
7.2.3 函數介紹............................................. .................................................. .............153
7.2.4 綜合案例:能力和智商測試的因子分析探索.................................... ...............154
第8 章判別分析
8.1 距離判別法.............................................. .................................................. ....................160
8.1.1 理論基礎:離誰近,就屬於誰..................................... .....................................160
8.1.2 函數介紹............................................. .................................................. .............162
8.1.3 綜合案例:基於距離判別的iris 數據集分類.................................... ................164
8.2 Bayes 判別法.............................................. .................................................. .................168
8.2.1 理論基礎:先驗概率與錯判損失..................................... .................................168
8.2.2 函數介紹............................................. .................................................. .............170
8.2.3 綜合案例:基於iris 數據集的Bayes 判別分析.................................... ............171
8.3 Fisher 判別法.............................................. .................................................. .................171
8.3.1 理論基礎:投影........................................... .................................................. ....171
8.3.2 函數介紹............................................. .................................................. .............173
8.3.3 綜合案例:基於Fisher 判別的iris 數據集分類.................................... ............174
第9 章常規聚類分析
9.1 深入瞭解聚類分析............................................ .................................................. ..........178
9.1.1 差異與分類............................................ .................................................. ...........178
9.1.2 主流的聚類算法.......................................... .................................................. .....179
9.2 動態聚類.............................................. .................................................. ........................180
9.2.1 聚類的基本過程.......................................... .................................................. .....180
9.2.2 函數介紹............................................. .................................................. .............183
9.2.3 綜合案例:基於隨機生成序列的動態聚類.................................... ...................184
9.3 層次聚類.............................................. .................................................. ........................194
9.3.1 聚類的基本過程.......................................... .................................................. .....194
9.3.2 函數介紹............................................. .................................................. .............197
9.3.3 綜合案例:基於UScitiesD 數據集的層次聚類.................................... .............199
9.4 密度聚類.............................................. .................................................. ........................202
9.4.1 聚類的基本過程.......................................... .................................................. .....202
9.4.2 函數介紹............................................. .................................................. .............202
9.4.3 綜合案例:基於隨機生成序列的密度聚類.................................... ...................203
9.5 EM 聚類.............................................. .................................................. .........................204
9.5.1 聚類的基本過程.......................................... .................................................. .....205
9.5.2 函數介紹............................................. .................................................. .............205
9.5.3 綜合案例:基於iris 數據集的EM 聚類.................................... ........................206
第10 章關聯規則
10.1 簡單關聯規則.............................................. .................................................. ..............210
10.1.1 基本概念與表示形式.......................................... .............................................210
10.1.2 評價簡單關聯規則的有效性和實用性..................................... ........................211
10.2 序列關聯規則.............................................. .................................................. ..............212
10.2.1 差異與基本概念........................................... .................................................. ..212
10.2.2 生成序列關聯規則........................................... ................................................213
10.3 Apriori 算法............................................... .................................................. ................214
10.3.1 算法介紹:挖掘頻繁項集........................................ ........................................214
10.3.2 函數介紹............................................. .................................................. ...........215
10.3.3 綜合案例:基於Titanic 數據集的關聯規則挖掘.................................... ........216
10.4 Eclat 算法............................................... .................................................. ...................224
10.4.1 算法介紹:自底向上的搜索....................................... .....................................224
10.4.2 函數介紹............................................. .................................................. ...........224
10.4.3 綜合案例:基於美國人口調查數據的關聯規則挖掘................................... ... 225
10.5 SPADE 算法............................................... .................................................. ................230
10.5.1 算法介紹:基於序列格的搜索和連接..................................... ........................231
10.5.2 函數介紹............................................. .................................................. ...........232
10.5.3 綜合案例:基於zaki 數據集的序列關聯規則挖掘................................... ......233
第11 章神經網絡
11.1 深入瞭解人工神經網絡............................................ .................................................. .239
11.1.1 生物神經元............................................ .................................................. .........240
11.1.2 人工神經元模型........................................... .................................................. ..241
11.1.3 人工神經網絡種類........................................... ................................................244
11.1.4 建立模型的一般步驟.......................................... ..............................................247
11.2 BP 反向傳播網絡............................................ .................................................. .........248
11.2.1 BP 反向傳播網絡模型......................................... ...........................................248
11.2.2 算法介紹............................................. .................................................. ............249
11.2.3 函數介紹............................................. .................................................. ............250
11.3 綜合案例:基於Boston 數據的波士頓郊區房價預測建模.................................... .... 252
