推薦系統實踐 推荐系统实践
項亮
買這商品的人也買了...
-
$354推薦系統 (Recommender Systems: An Introduction) -
貝葉斯方法:概率編程與貝葉斯推斷 (Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference)$534$507 -
$312Web API 的設計與開發 (Web API : the Good Parts) -
Python 入門邁向高手之路王者歸來$699$594 -
$505神經網絡設計 (Neural Network Design, 2/e) -
$352基於深度學習的自然語言處理/智能科學與技術叢書 -
$308GAN : 實戰生成對抗網絡 -
$709推薦系統:技術、評估及高效算法, 2/e (Recommender Systems Handbook, 2/e) -
機器學習|工作現場的評估、導入與實作$580$458 -
從零開始學架構:照著做,你也能成為架構師$594$564 -
$327機器學習算法實踐 — 推薦系統的協同過濾理論及其應用 -
$332推薦系統與深度學習 -
Deep learning 深度學習必讀 - Keras 大神帶你用 Python 實作 (Deep Learning with Python)$1,000$790 -
$403推薦系統開發實戰 -
$534推薦系統算法實踐 -
$446推薦系統 -
機器學習實務|資料科學工作流程與應用程式開發及最佳化 (Machine Learning in Production: Developing and Optimizing Data Science Workflows and Applications)$580$493 -
tf.keras 技術者們必讀!深度學習攻略手冊$1,000$850 -
$551深度學習推薦系統 -
矽谷資深演算法大師:帶你學深度學習推薦系統 (附8頁彩頁)$780$663 -
資料科學的建模基礎 : 別急著 coding!你知道模型的陷阱嗎?$599$509 -
親手開發推薦系統 - PyTorch 全方位實作最重要演算法$780$616 -
科技巨頭的演算法大揭祕:資料科學家必讀的資料科學與機器學習實戰筆記(iThome鐵人賽系列書)【軟精裝】$680$530 -
AI 工程|從基礎模型建構應用 (AI Engineering : Building Applications with Foundation Models)$1,200$948 -
你就是不寫測試才會沒時間:Kuma 的 TDD 實戰 — TypeScript 篇$580$452
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
VIP 95折
深入淺出 SSD 測試 : 固態存儲測試流程 方法與工具$594$564 -
VIP 95折
MCP 開發從入門到實戰$515$489 -
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
RISC-V 架構 DSP 處理器設計$534$507 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
85折
$454RAG 實踐權威指南:構建精準、高效大模型之道 -
VIP 95折
CUDA 並行編程與性能優化$714$678 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
VIP 95折
大模型驅動的具身智能 架構,設計與實現$534$507 -
VIP 95折
納米級CMOS VLSI電路(可制造性設計)$474$450 -
VIP 95折
Manus應用與AI Agent設計指南:從入門到精通$359$341 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
VIP 95折
芯片的較量 (日美半導體風雲)$414$393 -
VIP 95折
Manus AI 智能體從入門到精通$294$279 -
87折
$981深度學習:基礎與概念 -
85折
$505GitHub Copilot 編程指南 -
87折
$469Cursor 與 Copilot 開發實戰 : 讓煩瑣編程智能化 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
Verilog HDL 計算機網絡典型電路算法設計與實現$354$336 -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
85折
$505GitHub Copilot 編程指南 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673 -
VIP 95折
深入淺出 Docker, 2/e$419$398 -
85折
$658Unity 特效制作:Shader Graph 案例精講 -
79折
$275零基礎玩轉國產大模型DeepSeek -
VIP 95折
人工智能大模型:機器學習基礎$774$735 -
VIP 95折
RAG 極簡入門:原理與實踐$419$398 -
VIP 95折
大模型實戰 : 從零實現 RAG 與 Agent 系統$419$398 -
VIP 95折
算法趣學(第2版)$348$331 -
VIP 95折
大模型理論與實踐——打造行業智能助手$354$336 -
VIP 95折
大模型應用開發 RAG 實戰課$599$569 -
85折
$509生成式人工智能 (基於 PyTorch 實現) -
VIP 95折
機器人抓取力學$894$849 -
VIP 95折
集成電路版圖設計從入門到精通$474$450 -
VIP 95折
Java 學習筆記, 6/e$839$797
相關主題
商品描述
隨著信息技術和因特網的發展,人們逐漸從信息匱乏的時代走入了信息過載(information overload)的時代 。在這個時代,無論是信息消費者還是信息生產者都遇到了很大的挑戰:對於信息消費者,從大量信息中找到自己感興趣的信息是一件非常困難的事情;對於信息生產者,讓自己生產的信息脫穎而出,受到廣大用戶的關註,也是一件非常困難的事情。推薦系統是解決這一矛盾的重要工具。推薦系統的任務是聯系用戶和信息,一方面幫助用戶發現對自己有價值的信息,另一方面讓信息能夠展現在對它感興趣的用戶面前,從而實現信息消費者和信息生產者的雙贏。
作者簡介
項亮
畢業於中國科學技術大學和中國科學院自動化所,研究方向為機器學習和推薦系統,現任職於北京Hulu軟件技術開發有限公司,從事視頻推薦的研究和開發。2009年參加Netflix Prize推薦系統比賽獲得團體名,且於當年參與創建了Resys China推薦系統社區。
目錄大綱
第1章好的推薦系統1
1.1什麼是推薦系統1
1.2個性化推薦系統的應用4
1.2.1電子商務4
1.2.2電影和視頻網站8
1.2.3個性化音樂網絡電臺10
1.2.4社交網絡12
1.2.5個性化閱讀15
1.2.6基於位置的服務16
1.2.7個性化郵件17
1.2.8個性化廣告18
1.3推薦系統評測19
1.3.1推薦系統實驗方法20
1.3.2評測指標23
1.3.3評測維度34
第2章利用用戶行為數據35
2.1用戶行為數據簡介36
2.2用戶行為分析39
2.2.1用戶活躍度和物品流行度的分佈39
2.2.2用戶活躍度和物品流行度的關係41
2.3實驗設計和算法評測41
2.3.1數據集42
2.3.2實驗設計42
2.3.3評測指標42
2.4基於鄰域的算法44
2.4.1基於用戶的協同過濾算法44
2.4.2基於物品的協同過濾算法51
2.4.3 UserCF和ItemCF的綜合比較59
2.5隱語義模型64
2.5.1基礎算法64
2.5.2基於LFM的實際系統的例子70
2.5.3 LFM和基於鄰域的方法的比較72
2.6基於圖的模型73
2.6.1用戶行為數據的二分圖表示73
2.6.2基於圖的推薦算法73
第3章推薦系統冷啟動問題78
3.1冷啟動問題簡介78
3.2利用用戶註冊信息79
3.3選擇合適的物品啟動用戶的興趣85
3.4利用物品的內容信息89
3.5發揮專家的作用94
第4章利用用戶標籤數據96
4.1 UGC標籤系統的代表應用97
4.1.1 Delicious 97
4.1.2 CiteULike 98
4.1.3 Last.fm 98
4.1. 4豆瓣99
4.1.5 Hulu 99
4.2標籤系統中的推薦問題100
4.2.1用戶為什麼進行標註100
4.2.2用戶如何打標籤101
4.2.3用戶打什麼樣的標籤102
4.3基於標籤的推薦系統103
4.3 .1實驗設置104
4.3.2一個簡單的算法105
4.3.3算法的改進107
4.3.4基於圖的推薦算法110
4.3.5基於標籤的推薦解釋112
4.4給用戶推薦標籤115
4.4.1為什麼要給用戶推薦標籤115
4.4 .2如何給用戶推薦標籤115
4.4.3實驗設置116
4.4.4基於圖的標籤推薦算法119
4.5擴展閱讀119
第5章利用上下文信息121
5.1時間上下文信息122
5.1.1時間效應簡介122
5.1.2時間效應舉例123
5.1.3系統時間特性的分析125
5.1.4推薦系統的實時性127
5.1.5推薦算法的時間多樣性128
5.1.6時間上下文推薦算法130
5.1.7時間段圖模型134
5.1. 8離線實驗136
5.2地點上下文信息139
5.3擴展閱讀143
第6章利用社交網絡數據144
6.1獲取社交網絡數據的途徑144
6.1.1電子郵件145
6.1.2用戶註冊信息146
6.1.3用戶的位置數據146
6.1.4論壇和討論組146
6.1.5即時聊天工具147
6.1.6社交網站147
6.2社交網絡數據簡介148
社交網絡數據中的長尾分佈149
6.3基於社交網絡的推薦150
6.3.1基於鄰域的社會化推薦算法151
6.3.2基於圖的社會化推薦算法152
6.3.3實際系統中的社會化推薦算法153
6.3.4社會化推薦系統和協同過濾推薦系統155
6.3.5信息流推薦156
6.4給用戶推薦好友159
6.4.1基於內容的匹配161
6.4.2基於共同興趣的好友推薦161
6.4.3基於社交網絡圖的好友推薦161
6.4.4基於用戶調查的好友推薦算法對比164
6.5擴展閱讀165
第7章推薦系統實例166
7.1外圍架構166
7.2推薦系統架構167
7.3推薦引擎的架構171
7.3.1生成用戶特徵向量172
7.3.2特徵-物品相關推薦173
7.3.3過濾模塊174
7.3.4排名模塊174
7.4擴展閱讀178
第8章評分預測問題179
8.1離線實驗方法180
8.2評分預測算法180
8.2.1平均值180
8.2.2基於鄰域的方法184
8.2.3隱語義模型與矩陣分解模型186
8.2.4加入時間信息192
8.2.5模型融合193
8.2.6 Netflix Prize的相關實驗結果195

