深度學習導論 精裝版
Eugene Charniak 沈磊,鄭春萍譯
- 出版商: 人民郵電
- 出版日期: 2020-04-01
- 定價: $534
- 售價: 7.9 折 $422
- 語言: 簡體中文
- 頁數: 151
- 裝訂: 精裝
- ISBN: 7115534527
- ISBN-13: 9787115534521
-
相關分類:
DeepLearning
- 此書翻譯自: Introduction to Deep Learning (Hardcover)
-
相關翻譯:
深度學習導論 (簡中版)
-
其他版本:
深度學習導論
立即出貨
買這商品的人也買了...
-
高等微積分【解析概論】$550$523 -
$387JavaScript 高級程序設計, 4/e (Professional JavaScript for Web Developers, 4/e) -
$559機器學習測試入門與實踐 -
$500人工智能:深度學習核心算法 -
$199深度學習 -
$556機器學習提升法 理論與算法 -
Effective Python 中文版|寫出良好 Python 程式的 90個具體做法, 2/e (Effective Python: 90 Specific Ways to Write Better Python, 2/e)$580$493 -
完全自學!Go 語言 (Golang) 實戰聖經 (The Go Workshop: Learn to write clean, efficient code and build high-performance applications with Go)$880$695 -
核心開發者親授!PyTorch 深度學習攻略 (Deep Learning with Pytorch)$1,000$850 -
大話 AWS 雲端架構:雲端應用架構圖解輕鬆學, 2/e$620$484 -
$473Python 電腦視覺與深度學習實戰 -
跟著 Docker 隊長,修練 22天就精通 - 搭配 20小時作者線上教學,無縫接軌 Microservices、Cloud-native、Serverless、DevOps 開發架構$880$695 -
TypeScript 邁向專家之路:零基礎 JavaScript 打通 Angular、React 與 Vue.js 前端框架實戰 (Essential TypeScript: From Beginner to Pro)$880$695 -
AutoML 自動化機器學習:用 AutoKeras 超輕鬆打造高效能 AI 模型 (Automated Machine Learning with AutoKeras: Deep learning made accessible for everyone with just few lines of coding)$690$545 -
TensorFlow.js 學習手冊 (Learning Tensorflow.Js: Powerful Machine Learning in JavaScript)$580$458 -
AWS 職場實戰手冊 - 企業架站、安全防護、費用監控,用最省錢的方式紮實學會!$620$527 -
開發者傳授 PyTorch 秘笈$1,200$948 -
科學方法賺大錢 - Python 進行商品期貨量化交易$720$569 -
最速網頁開發:用 Go Web 一手建立高能效網站系統, 2/e$880$695 -
$403交易的密碼:用算法賺取第一桶金 -
$61121天學通C++(第9版) -
$178深度學習框架及系統部署實戰(微課視頻版) -
$473YOLO 目標檢測 -
萬顆 GPU 的訓練 - 分散式機器學習 — 系統工程與實戰$1,280$1,011 -
$564深度學習和大模型原理與實踐
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$576 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
本書講述了前饋神經網絡、Tensorflow、捲積神經網絡、詞嵌入與循環神經網絡、
序列到序列學習、深度強化學習、無監督神經網絡模型等深度學習領域的基本概念和技術,
通過一系列的編程任務,向讀者介紹了熱門的人工智能應用,包括計算機視覺和自然語言處理等。
本書編寫簡明扼要,理論聯繫實踐,每一章都包含習題以及補充閱讀的參考文獻。
本書既可作為高校人工智能課程的教學用書,也可供從業者入門參考。
本書要求讀者熟悉線性代數、多元微積分、概率論與數理統計知識,另外需要讀者瞭解Python編程。
作者簡介
Eugene Charniak
美國布朗大學計算機科學和認知科學教授,博士畢業於MIT,
博士導師是人工智能之父馬文·明斯基。
他是國際知名的人工智能研究者,美國人工智能學會(AAAI)會士,
2011年獲美國計算語言學會(ACL)終身成就獎。
除本書之外,他還撰寫了《統計語言學習》《人工智能編程》等圖書。
譯者簡介
沈磊
美國計算語言學會(ACL)會員,中國計算機學會(CCF)會員,
博士畢業於北京航空航天大學計算機學院,
博士研究方向為人工智能、模式識別,現為vivo公司北京AI研究院NLP算法專家,
主要方向為自然語言理解和自動問答。
她在自然語言處理及推薦算法方向發表了多篇學術論文,申請了5項專利。
鄭春萍
教育學博士,北京郵電大學人文學院副教授,主要研究方向為應用語言學與計算機輔助翻譯。
她是美國國務院“英語語言學者項目”訪問學者、英國曼徹斯特大學人文藝術學院訪問學者,
曾獲北京市高等教育教學成果一等獎、北京市高校青年教學名師獎、
中央電視臺“希望之星”英語風採大賽全國總決賽*佳指導教師獎等獎項。
她主持了國家社科基金、教育部霍英東青年教師基金及教育部人文社科基金等省部級課題6項,
發表學術論文40餘篇,主編教材2部,出版專著1部、譯著2部。
目錄大綱
目錄:
第1章前饋神經網絡1
1.1感知機3
1.2神經網絡的交叉熵損失函數7
1.3導數與隨機梯度下降11
1.4編寫程序15
1.5神經網絡的矩陣表示17
1.6數據獨立性19
1.7參考文獻和補充閱讀20
1.8習題21
第2章Tensorflow 23
2.1預備知識23
2.2 TF程序26
2.3多層神經網絡31
2.4其他方面34
2.4.1檢查點34
2.4.2 tensordot 35
2.4.3 TF變量的初始化37
2.4.4 TF圖創建的簡化39
2.5參考文獻和補充閱讀40
2.6習題40
第3章捲積神經網絡43
3.1濾波器、步長和填充43
3.2一個簡單的TF捲積例子49
3.3多層捲積51
3.4捲積細節54
3.4.1偏置54
3.4.2捲積層55
3.4.3池化運算(pooling) 55
3.5參考文獻和補充閱讀56
3.6習題57
第4章詞嵌入與循環神經網絡59
4.1語言模型的詞嵌入59
4.2構建前饋語言模型63
4.3改進前饋語言模型65
4.4過擬合66
4.5循環網絡69
4.6長短期記憶模型75
4.7參考文獻和補充閱讀78
4.8習題78
第5章序列到序列學習81
5.1 seq2seq模型82
5.2編寫一個seq2seq MT程序84
5.3 seq2seq中的註意力機制87
5.4多長度seq2seq 90
5.5編程練習91
5.6參考文獻和補充閱讀93
5.7習題94
第6章深度強化學習97
6.1值疊代98
6.2 Q學習101
6.3深度Q學習基礎103
6.4策略梯度法106
6.5行動者-評論家方法112
6.6經驗回放114
6.7參考文獻和補充閱讀115
6.8習題116
第7章無監督神經網絡模型119
7.1基本自編碼119
7.2捲積自編碼122
7.3變分自編碼126
7.4生成式對抗網絡132
7.5參考文獻和補充閱讀137
7.6習題137
附錄A部分習題答案139
附錄B參考文獻143
附錄C索引147
本書讚譽151


