深度學習:從入門到精通 (微課版)
王漢生
- 出版商: 人民郵電
- 出版日期: 2021-01-01
- 定價: $299
- 售價: 7.9 折 $236
- 語言: 簡體中文
- 頁數: 232
- ISBN: 711553702X
- ISBN-13: 9787115537027
-
相關分類:
DeepLearning
立即出貨
買這商品的人也買了...
-
機器學習$648$616 -
$403AWS Lambda 實戰 : 開發事件驅動的無服務器應用程序 (AWS Lambda in Action: Event-Driven Serverless Applications) -
$454統計機器學習導論 (Introduction to Statistical Machine Learning) -
駭客的 Linux 基礎入門必修課 (Linux Basics for Hackers: Getting Started with Networking, Scripting, and Security in Kali)$420$357 -
$352深度學習筆記 -
$505Python 安全攻防:滲透測試實戰指南 -
$403基於 Google 雲平臺的機器學習和深度學習入門 -
$564大話數據結構 [溢彩加強版] -
$539零基礎學機器學習 -
$352電腦視覺圖像與視頻數據標註 -
$374Python 機器學習建模與部署 -- 從 Keras到 Kubernetes (Keras to Kubernetes: The Journey of a Machine Learning Model to Production) -
$236大數據專業英語教程 (附全套音頻) -
$322開源法則 -
Deep Learning Systems: Algorithms, Compilers, and Processors for Large-Scale Production (Paperback)$2,440$2,318 -
行動裝置深度學習$380$296 -
$403PyTorch 生成對抗網絡編程 -
認識人工智慧-第四波工業革命$420$378 -
$607機器學習導論 -
$213實戰深度學習——原理、框架及應用 -
人工智慧:8堂一點就通的基礎活用課$380$296 -
$180機器學習公式詳解 -
最踏實 AI 之路:全白話機器學習一次搞懂$780$616 -
原來AI這麼簡單!:熟練機器學習5大步驟,就算不會寫程式,也能成為AI高手$300$255 -
$653聯邦學習:原理與算法 -
$356一本書讀懂 AIGC:ChatGPT、AI繪畫、智能文明與生產力變革
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$576 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
本書全面系統地講解了深度學習相關的知識。全書共8章,內容包括深度學習簡介及TensorFlow安裝,神經網絡基礎、神經網絡的TensorFlow實現、捲積神經網絡基礎、經典捲積神經網絡(上)、經典捲積神經網絡(下)、深度學慣用於文本序列和深度學習實驗項目等內容。
本書以知識體系為基礎,以課堂案例為載體,採取理論與實踐相結合的教學模式,通過知識講解和上機實驗,使學生不僅掌握深度學習的理論基礎,而且能夠實現基本的代碼。
作者簡介
北京大學光華管理學院商務統計與經濟計量系,嘉茂榮聘教授,博導,系主任。在理論研究方面,關註高維數據分析。在業界實踐方面,王漢生教授是國內最早從統計數據分析角度關註並研究搜索引擎營銷,社交網絡數據,以及位置軌跡數據分析的學者。曾與百度合作完成百度分析師高級培訓,並擔任百度認證專家委員會委員。在推進統計應用在電子商務以及移動因特網應用方面建樹頗多。
目錄大綱
第 1章 深度學習簡介及TensorFlow安裝 1
【學習目標】 1
【導言】 1
1.1 機器學習、深度學習與人工智能 2
1.1.1 機器學習 2
1.1.2 深度學習 3
1.1.3 機器學習與深度學習同人工智能的關系 4
1.2 深度學習與回歸分析 5
1.2.1 回歸分析理論框架 5
1.2.2 深度學習與回歸分析的聯系 6
1.3 深度學習的發展歷程 7
1.4 深度學習擅長的領域 9
1.4.1 圖像處理 9
1.4.2語音識別 12
1.4.3自然語言處理 12
1.4.4棋牌競技 13
1.4.5視頻處理 14
1.5 安裝TensorFlow 14
1.5.1 TensorFlow和Keras介紹 15
1.5.2 硬件環境準備 15
1.5.3 軟件環境準備 16
1.5.4 安裝Anaconda 17
1.5.5 安裝TensorFlow及Keras軟件包 17
1.5.6 Jupyter Notebook運行深度學習 19
課後習題 20
第 2章 神經網絡基礎 21
【學習目標】 21
【導言】 21
2.1 神經網絡模型介紹 21
2.1.1 M-P神經元模型 22
2.1.2 感知機模型 23
2.1.3 多層感知機模型 24
2.2 激活函數 25
2.2.1 sigmoid激活函數 26
2.2.2 tanh激活函數 27
2.2.3 Relu激活函數 28
2.3 神經網絡的訓練 29
2.3.1 神經網絡的訓練流程 29
2.3.2 前向傳播算法 31
2.3.3 損失函數 32
2.3.4 基於梯度下降算法的預備知識 33
2.3.5批量梯度下降算法(Mini-batch) 35
2.3.6批量梯度下降算法的改進 36
2.3.7 反向傳播算法 38
2.4 神經網絡的過擬合及處理方法 40
2.4.1 過擬合 41
2.4.2 正則化方法 42
2.4.3 Dropout方法 44
課後習題 46
第3章 神經網絡的TensorFlow實現 47
【學習目標】 47
【導言】 47
3.1 神經網絡的數據結構 47
3.1.1 張量及其分類 47
3.1.2 張量數據示例 49
3.2 圖像數據的存儲與運算 51
3.2.1圖像數據的讀入與展示 52
3.2.2 圖像數據的代數運算 54
3.3線性回歸模型的TensorFlow實現 55
3.3.1 線性回歸模型 55
3.3.2 案例:美食評分 56
3.4 邏輯回歸模型的TensorFlow實現 63
3.4.1 邏輯回歸模型 63
3.4.2 Softmax回歸模型 64
3.4.3 案例:手寫數字識別 65
課後習題 70
第4章 捲積神經網絡基礎 71
【學習目標】 71
【導言】 71
4.1 捲積神經網絡的基本結構 71
4.2 “捲積”與“池化”的通俗理解 72
4.2.1 對捲積的理解 72
4.2.2 對池化的理解 73
4.3 捲積 74
4.3.1 二維離散捲積 75
4.3.2 捲積結果的輸出尺寸 80
4.3.3 多深度的離散捲積 81
4.3.4 捲積運算的三個特性 90
4.4 池化操作 92
4.4.1 same池化 92
4.4.2 valid池化 99
課後習題 105
第5章 經典捲積神經網絡(上) 106
【學習目標】 106
【導言】 106
5.1 LeNet-5介紹 107
5.1.1 LeNet-5網絡結構 107
5.1.2 案例:LeNet-5手寫數字識別 108
5.2 AlexNet介紹 113
5.2.1 AlexNet網絡結構 113
5.2.2 AlexNet創新點 114
5.2.3 案例:中文字體識別——隸書和行楷 115
5.3 VGG介紹 119
5.3.1 VGG網絡結構 119
5.3.2 案例:加利福尼亞理工學院鳥類數據庫分類 121
5.4 Batch Normalization技巧 127
5.4.1 Batch Normalization核心思想 127
5.4.2 帶有BN的邏輯回歸 128
5.4.3 帶有BN的寬度模型 131
5.4.4 帶有BN的深度模型 133
5.5 Data Augmentation技巧 135
5.5.1 Data Augmentation核心思想 135
5.5.2 數據增強實例:貓狗分類 136
課後習題 140
第6章 經典捲積神經網絡(下) 141
【學習目標】 141
【導言】 141
6.1 Inception模型介紹 141
6.1.1 Inception網絡結構 142
6.1.2 案例:Flower分類 147
6.2 ResNet模型介紹 150
6.2.1 ResNet網絡結構 150
6.2.2 案例:花的三分類問題 154
6.3 DenseNet模型介紹 158
6.3.1 DenseNet網絡結構 158
6.3.2案例:性別區分 163
6.4 MobileNet模型介紹 167
6.4.1 MobileNet網絡結構 167
6.4.2 案例:狗的分類 172
6.5 遷移學習 176
6.5.1 深度學習的現實困難 176
6.5.2 遷移學習原理 177
6.5.3 Keras中的遷移學習模型 178
課後習題 182
第7章 深度學慣用於文本序列 183
【學習目標】 183
【導言】 183
7.1詞嵌入 184
7.1.1 詞嵌入前期知識 184
7.1.2 詞嵌入的理論原理 187
7.1.3詞嵌入的程序實現 189
7.2機器“作詩”初級:邏輯回歸 192
7.2.1 機器“作詩”原理 192
7.2.2原理實現:數據處理 195
7.2.3原理實現:邏輯回歸 200
7.3機器“作詩”進階(1):RNN 205
7.3.1 RNN前期知識 206
7.3.2 RNN模型介紹 208
7.3.3原理實現:數據處理 209
7.3.4原理實現:RNN作詩 213
7.4 機器“作詩”進階(2):LSTM 216
7.4.1 LSTM前期知識 216
7.4.2 LSTM模型介紹 219
7.4.3 原理實現:數據準備 224
7.4.4原理實現:LSTM代碼實現 225
7.5 文本序列應用實例:機器翻譯 228
7.5.1機器翻譯原理 228
7.5.2 案例:中英文翻譯 234
課後習題 242
第8章 深度學習實驗項目 243
【學習目標】 243
【導言】 243
8.1實驗一:LeNet模型 244
8.2實驗二:AlexNet模型 244
8.3 實驗三:VGG 16模型 244
8.4 實驗四:Inception V3模型 245
8.5 實驗五:ResNet模型 245
8.6 實驗六:DenseNet模型 246
8.7 實驗七:MobileNet模型 246
8.8 實驗八:邏輯回歸作詩 247
8.9 實驗九:RNN模型作詩 247
8.10 實驗十:LSTM模型作詩 248


