GAN 實戰 GANs in Action
Jakub Langr,Vladimir Bok 羅家佳譯
- 出版商: 人民郵電
- 出版日期: 2021-03-01
- 定價: $414
- 售價: 7.9 折 $327
- 語言: 簡體中文
- 頁數: 200
- 裝訂: 平裝
- ISBN: 7115550840
- ISBN-13: 9787115550842
-
相關分類:
GAN 生成對抗網絡
- 此書翻譯自: GANs in Action: Deep learning with Generative Adversarial Networks (Paperback)
-
相關翻譯:
GAN 對抗式生成網路 (GANs in Action: Deep learning with Generative Adversarial Networks) (繁中版)
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
特徵工程不再難:資料科學新手也能輕鬆搞定! (Feature Engineering Made Easy: Identify unique features from your dataset in order to build powerful machine learning systems)$520$406 -
$709深入解析 CSS (CSS in Depth) -
$221Python 數據分析與可視化 -
$232區塊鏈通識課50講 -
$5595G 無線網大規模規劃部署實踐 -
$119區塊鏈+ 大眾科普讀本 -
機器學習設計模式 (Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and Mlops)$680$537 -
$305機器學習入門與實戰 — 基於 scikit-learn 和 Keras -
$352MATLAB 神經網絡 43個案例分析 -
$407超簡單:用 Python 讓 Excel 飛起來 (核心模塊語法詳解篇) -
$331集成學習入門與實戰:原理、算法與應用 -
TensorFlow.js 學習手冊 (Learning Tensorflow.Js: Powerful Machine Learning in JavaScript)$580$458 -
$678Python 數據清洗 -
全格局使用 PyTorch -- 深度學習和圖神經網路 -- 基礎篇$880$695 -
PyTorch 深度學習入門與應用:必備實作知識與工具一本就學會$600$468 -
$505生成對抗網絡 GAN:原理與實踐 -
$560動手學深度學習 (PyTorch 版) -
$801精通機器學習算法 -
$862先進 PID 控制 MATLAB 模擬, 5/e -
不只是 CUDA,通用 GPU 程式模型及架構原理$780$616 -
HuggingFace 自然語言處理詳解 — 基於 BERT 中文模型的任務實戰$414$393 -
$662Amazon Web Services 雲計算實戰, 2/e -
ChatGPT 開發手冊 - 用 OpenAI API ‧ LangChain ‧ Embeddings 設計 Plugin、LINE/Discord bot、股票分析與客服自動化助理$750$593 -
機器學習的公式推導和程式實作$580$458 -
$510時間序列與機器學習
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$576 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
本書主要介紹構建和訓練生成對抗網絡(GAN)的方法。
全書共12 章,先介紹生成模型以及GAN 的工作原理,並概述它們的潛在用途,
然後探索GAN 的基礎結構(生成器和鑒別器),引導讀者搭建一個簡單的對抗系統。
本書給出了大量的示例,教讀者學習針對不同的場景訓練不同的GAN,進而完成生成高分辨率圖像、
實現圖像到圖像的轉換、生成對抗樣本以及目標數據等任務,讓所構建的系統變得智能、有效和快速。
作者簡介
Jakub Langr
英國創企孵化器 Founders Factory計算機視覺領域的聯合創始人。
Vladimir Bok
美國紐約一家初創公司的高級產品經理,負責機器學習基礎架構方面的工作和研究團隊的整體運作。
目錄大綱
第一部分生成對抗網絡(GAN)與生成模型導論
第1章GAN簡介3
1.1什麼是GAN 5
1.2 GAN是如何工作的5
1.3 GAN實戰6
1.3.1 GAN的訓練7
1 .3.2達到平衡10
1.4為什麼要學GAN 11
1.5小結14
第2章自編碼器生成模型入門15
2.1生成模型簡介16
2.2自編碼器如何用於高級場景16
2 .3什麼是GAN的自編碼器18
2.4自編碼器的構成18
2.5自編碼器的使用20
2.6無監督學習21
2.6.1吐故納新21
2.6.2使用自編碼器生成22
2.6.3變分自編碼器23
2.7代碼就是生命23
2.8為什麼要嘗試使用GAN 30
2.9小結32
第3章你的第一個GAN模型:生成手寫數字.33
3.1 GAN的基礎:對抗訓練33
3.1.1代價函數35
3.1.2訓練過程35
3.2生成器和鑑別器37
3.2.1對抗的目標37
3.2.2混淆矩陣38
3.3 GAN訓練算法38
3.4教程:生成手寫數字39
3.4.1導入模塊並指定模型輸入維度40
3.4.2構造生成器41
3.4. 3構造鑑別器41
3.4.4搭建整個模型42
3.4.5訓練43
3.4.6輸出樣本圖像44
3.4.7運行模型45
3.4.8檢查結果45
3.5結論46
3.6小結46
第4章深度捲積生成對抗網絡(DCGAN)47
4.1捲積神經網絡48
4.1.1捲積濾波器48
4.1.2參數共享48
4.1.3捲積神經網絡可視化48
4.2 DCGAN簡史49
4.3批歸一化50
4.3.1理解歸一化50
4.3.2計算批歸一化51
4.4教程:用DCGAN生成手寫數字52
4.4.1導入模塊並指定模型輸入維度53
4.4.2構造生成器53
4.4.3構造鑑別器55
4.4.4構建並運行DCGAN 57
4.4.5模型輸出59
4.5結論60
4.6小結60
第二部分GAN的前沿主題
第5章訓練與普遍挑戰:為成功而GAN 63
5.1評估65
5.1.1評估框架65
5.1.2 IS 67
5.1.3 FID 68
5.2訓練中的挑戰70
5.2.1增加網絡深度72
5.2.2遊戲設置73
5.2.3最小-最大GAN 73
5.2.4非飽和GAN 74
5.2. 5何時停止訓練76
5.2.6 WGAN77
5.3總結遊戲設置80
5.4訓練技巧81
5.4.1輸入的歸一化81
5.4.2批歸一化81
5.4. 3梯度懲罰82
5.4.4對鑑別器進行更多的訓練82
5.4.5避免稀疏梯度83
5.4.6平滑和帶噪聲的標籤83
5.5小結83
第6章漸進式增長生成對抗網絡(PGGAN) 85
6.1潛在空間插值86
6.2它們發展如此之快87
6.2.1高分辨率層的漸進增長和平滑87
6.2.2示例實現90
6.2. 3小批量標準偏差91
6.2.4均衡學習率92
6.2.5生成器中的像素級特徵歸一化93
6.3主要創新點總結96
6.4 TensorFlow Hub庫及其實踐97
6.5 PGGAN的實際應用98
6.6小結101
第7章半監督生成對抗網絡(SGAN) 103
7.1 SGAN簡介105
7.1.1什麼是SGAN 106
7.1.2結構107
7.1.3訓練過程107
7. 1.4訓練目標108
7.2教程:SGAN的實現108
7.2.1架構圖108
7.2.2實現109
7.2.3設置109
7.2.4數據集110
7.2.5生成器112
7.2.6鑑別器112
7.2.7搭建整個模型115
7.2.8訓練116
7.3與全監督分類器的對比118
7.4結論119
7.5小結119
第8章條件生成對抗網絡(CGAN) 121
8.1動機121
8.2什麼是CGAN 122
8.2.1 CGAN的生成器123
8.2.2 CGAN的鑑別器123
8.2.3匯總表124
8.2.4架構圖124
8.3教程:CGAN的實現125
8.3.1實現125
8.3.2設置125
8.3.3 CGAN的生成器126
8 .3.4 CGAN的鑑別器128
8.3.5搭建整個模型130
8.3.6訓練131
8.3.7輸出樣本圖像132
8.3.8訓練模型134
8.3.9檢查輸出:生成目標數據134
8.4結論135
8.5小結136
第9章循環一致性生成對抗網絡(CycleGAN) 137
9.1圖像到圖像的轉換137
9.2循環一致性損失:再GAN一次139
9. 3對抗損失140
9.4恆等損失140
9.5架構142
9.5.1 CycleGAN架構:構建網絡143
9.5.2生成器架構144
9.5.3鑑別器架構146
9.6 GAN的面向對象設計146
9.7教程:CycleGAN 146
9.7.1構建網絡148
9.7.2構建生成器149
9.7.3構建鑑別器151
9.7.4訓練CycleGAN 152
9.7.5運行CycleGAN 154
9.8擴展、增強和應用154
9.8.1增強CycleGAN 154
9.8.2應用155
9.9小結156
第三部分何去何從
第10章對抗樣本159
10.1對抗樣本的背景160
10.2謊言,該死的謊言及分佈161
10.3訓練的使用與濫用162
10.4信號與噪聲167
10.5柳暗花明又一村171
10. 6 GAN的對手172
10.7結論173
10.8小結174
第11章GAN的實際應用175
11.1醫學領域的GAN 176
11.1.1利用GAN提高診斷準確率176
11.1.2方法178
11.1.3結果179
11.2時尚領域的GAN 180
11.2.1利用GAN設計服裝181
11.2.2方法181目錄
11.2.3創造新單品以符合個人偏好182
11.2 .4修改現有單品以更符合個人偏好184
11.3結論187
11.4小結187
第12章展望未來189
12.1倫理問題189
12.2 GAN的創新191
12.2.1相對生成對抗網絡(RGAN) 192
12.2.2自註意力生成對抗網絡(SAGAN ) 194
12.2.3 BigGAN 196
12.3拓展閱讀198
12.4回顧與總結198
12.5小結200


