深度學習的數學——使用Python語言 Math for Deep Learning: What You Need to Know to Understand Neural Networks
[美]羅納德·T.紐塞爾(Ronald T. Kneusel)
- 出版商: 人民郵電
- 出版日期: 2024-10-01
- 定價: $539
- 售價: 7.9 折 $426
- 語言: 簡體中文
- 頁數: 238
- 裝訂: 平裝
- ISBN: 711560777X
- ISBN-13: 9787115607775
-
相關分類:
DeepLearning、Python
- 此書翻譯自: Math for Deep Learning: What You Need to Know to Understand Neural Networks (Paperback)
立即出貨
買這商品的人也買了...
-
$505Python 物理學高效計算 (Effective Computation in Physics) -
$422深入淺出圖神經網絡:GNN 原理解析 -
$505深度學習與圍棋 -
$301信號與系統 — 使用 MATLAB 分析與實現, 2/e -
$458動手學機器學習 -
AI 時代 Math 元年 - 用 Python 全精通數學要素$980$774 -
絕對會 Python 用場! 驚人的程式妙用$680$537 -
$658Python 強化學習:演算法、核心技術與產業應用 -
$749深入理解 Go 並發編程:從原理到實踐,看這本就夠了 -
$556大規模語言模型:從理論到實踐 -
$556演算法秘籍 -
$469LangChain 入門指南:構建高可復用、可擴展的 LLM 應用程序 -
跟 NVIDIA 學深度學習!從基本神經網路到 ......、GPT、BERT...,紮穩機器視覺與大型語言模型 (LLM) 的建模基礎$880$748 -
邊緣AI|使用嵌入式機器學習解決真實世界的問題 (AI at the Edge: Solving Real-World Problems with Embedded Machine Learning)$880$695 -
$374Llama 大模型實踐指南 -
機器學習的公式推導和程式實作$580$458 -
$407漫畫算法與數據結構(大規模數據集) -
PyTorch 自動駕駛視覺感知算法實戰$714$678 -
$464Python貝葉斯建模與計算 -
$594PyTorch 深度學習指南 捲I :程式設計基礎 -
$556PyTorch 深度學習指南 捲II :電腦視覺 -
$709PyTorch 深度學習指南 捲III :序列與自然語言處理 -
LLM 的大開源時代 - Llama 模型精讀實戰$650$514 -
$419特徵工程訓練營 -
為你自己學 Python$600$474
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$576 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
深度學習是一門註重應用的學科。瞭解深度學習背後的數學原理的人,可以在應用深度學習解決實際問題時遊刃有餘。本書通過Python代碼示例來講解深度學習背後的關鍵數學知識,包括概率論、統計學、線性代數、微分等,並進一步解釋神經網絡、反向傳播、梯度下降等深度學習領域關鍵知識背後的原理。
本書適合有一定深度學習基礎、瞭解Pyho如編程語言的讀者閱讀,也可作為拓展深度學習理論的參考書。
作者簡介
羅納德·T. 紐塞爾(Ronald T. Kneusel),擁有超過 20 年的機器學習行業經驗,著有多本AI領域圖書。本書適合有一定深度學習基礎、瞭解Python編程語言的讀者閱讀,也可作為用於拓展深度學習理論的參考書。
目錄大綱
第 1 章 搭建舞臺 1
1.1 組件安裝 2
1.1.1 Linux 2
1.1.2 macOS 3
1.1.3 Windows 3
1.2 NumPy 4
1.2.1 定義數組 4
1.2.2 數據類型 4
1.2.3 二維數組 5
1.2.4 全 0 數組和全 1 數組 6
1.2.5 高級索引 6
1.2.6 讀寫磁盤 8
1.3 SciPy 8
1.4 matplotlib 9
1.5 scikit-learn 11
1.6 小結 12
第 2 章 概率論 13
2.1 基礎概念 13
2.1.1 樣本空間和事件 14
2.1.2 隨機變量 14
2.1.3 人類不擅於處理概率問題 15
2.2 概率法則 16
2.2.1 事件的概率 16
2.2.2 加法法則 18
2.2.3 乘法法則 19
2.2.4 加法法則的修正版 20
2.2.5 生日難題 20
2.2.6 條件概率 23
2.2.7 全概率公式 24
2.3 聯合概率和邊緣概率 25
2.3.1 聯合概率表 25
2.3.2 概率的鏈式法則 29
2.4 小結 30
第 3 章 概率論進階 31
3.1 概率分佈 31
3.1.1 直方圖與概率 32
3.1.2 離散型概率分佈 34
3.1.3 連續型概率分佈 39
3.1.4 中心極限定理 42
3.1.5 大數法則 45
3.2 貝葉斯定理 45
3.2.1 回到判斷女性是否患有乳腺癌的例子 46
3.2.2 更新先驗 47
3.2.3 機器學習中的貝葉斯定理 48
3.3 小結 50
第 4 章 統計學 51
4.1 數據類型 51
4.1.1 定類數據 52
4.1.2 定序數據 52
4.1.3 定距數據 52
4.1.4 定比數據 52
4.1.5 在深度學習中使用定類數據 53
4.2 描述性統計量 54
4.2.1 均值和中位數 54
4.2.2 用於衡量變化的統計量 57
4.3 分位數和箱形圖 60
4.4 缺失數據 64
4.5 相關性 66
4.5.1 皮爾森相關性 67
4.5.2 斯皮爾曼相關性 70
4.6 假設檢驗 71
4.6.1 假設 72
4.6.2 t 檢驗 73
4.6.3 曼-惠特尼 U 檢驗 77
4.7 小結 79
第 5 章 線性代數 80
5.1 標量、向量、矩陣和張量 80
5.1.1 標量 81
5.1.2 向量 81
5.1.3 矩陣 82
5.1.4 張量 82
5.2 用張量進行代數運算 84
5.2.1 數組運算 85
5.2.2 向量運算 86
5.2.3 矩陣乘法 93
5.2.4 克羅內克積 97
5.3 小結 98
第 6 章 線性代數進階 99
6.1 方陣 99
6.1.1 為什麼需要方陣 100
6.1.2 轉置、跡和冪 101
6.1.3 特殊方陣 103
6.1.4 三角矩陣 104
6.1.5 行列式 104
6.1.6 逆運算 107
6.1.7 對稱矩陣、正交矩陣和酉矩陣 108
6.1.8 對稱矩陣的正定性 109
6.2 特徵向量和特徵值 110
6.3 向量範數和距離度量 113
6.3.1 L 範數和距離度量 113
6.3.2 協方差矩陣 114
6.3.3 馬氏距離 116
6.3.4 K-L 散度 118
6.4 主成分分析 120
6.5 奇異值分解和偽逆 122
6.5.1 SVD 實戰 123
6.5.2 SVD 的兩個應用 124
6.6 小結 126
第 7 章 微分 127
7.1 斜率 127
7.2 導數 129
7.2.1 導數的正式定義 129
7.2.2 基本法則 130
7.2.3 三角函數的求導法則 133
7.2.4 指數函數和自然對數的求導法則 135
7.3 函數的極小值和極大值 137
7.4 偏導數 140
7.4.1 混合偏導數 142
7.4.2 偏導數的鏈式法則 142
7.5 梯度 143
7.5.1 梯度的計算 144
7.5.2 可視化梯度 146
7.6 小結 148
第 8 章 矩陣微分 149
8.1 一些公式 149
8.1.1 關於標量的向量函數 150
8.1.2 關於向量的標量函數 151
8.1.3 關於向量的向量函數 152
8.1.4 關於標量的矩陣函數 152
8.1.5 關於矩陣的標量函數 153
8.2 一些性質 154
8.2.1 關於向量的標量函數 154
8.2.2 關於標量的向量函數 156
8.2.3 關於向量的向量函數 156
8.2.4 關於矩陣的標量函數 157
8.3 雅可比矩陣和黑塞矩陣 158
8.3.1 雅可比矩陣 159
8.3.2 黑塞矩陣 163
8.4 矩陣微分的一些實例 168
8.4.1 元素級運算求導 168
8.4.2 激活函數的導數 169
8.5 小結 171
第 9 章 神經網絡中的數據流 172
9.1 數據的表示 172
9.1.1 在傳統神經網絡中表示數據 173
9.1.2 在深度捲積網絡中表示數據 173
9.2 傳統神經網絡中的數據流 175
9.3 捲積神經網絡中的數據流 178
9.3.1 捲積 179
9.3.2 捲積層 183
9.3.3 池化層 185
9.3.4 全連接層 186
9.3.5 綜合應用 186
9.4 小結 189
第 10 章 反向傳播 190
10.1 什麼是反向傳播 190
10.2 手把手進行反向傳播 191
10.2.1 計算偏導數 192
10.2.2 用 Python 進行實現 194
10.2.3 訓練和測試模型 197
10.3 全連接網絡的反向傳播 199
10.3.1 誤差的反向傳播 199
10.3.2 關於權重和偏置求偏導數 201
10.3.3 Python 實現代碼 203
10.3.4 測試 Python 實現代碼 206
10.4 計算圖 208
10.5 小結 210
第 11 章 梯度下降 211
11.1 基本原理 211
11.1.1 一維函數的梯度下降 212
11.1.2 二維函數的梯度下降 214
11.2 隨機梯度下降 219
11.3 動量機制 221
11.3.1 什麼是動量 221
11.3.2 一維情況下的動量機制 222
11.3.3 二維情況下的動量機制 223
11.3.4 在訓練模型時引入動量 225
11.3.5 涅斯捷洛夫動量 229
11.4 自適應梯度下降 231
11.4.1 RMSprop 231
11.4.2 Adagrad 232
11.4.3 Adam 233
11.4.4 關於優化器的一些思考 234
11.5 小結 235
附錄 學無止境 236
概率與統計 236
線性代數 237
微積分 237
深度學習 237


