統計信號處理基礎:實用算法開發‧捲III
(美)S. M. 凱 著 羅鵬飛 譯
- 出版商: 電子工業
- 出版日期: 2018-02-01
- 定價: $474
- 售價: 7.9 折 $374
- 語言: 簡體中文
- 頁數: 320
- ISBN: 7121276070
- ISBN-13: 9787121276071
-
相關分類:
數位訊號處理 Dsp
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$398多模態生物特徵識別-基於人臉與人耳信息 -
$534軟/硬件協同設計 (原書第2版) -
$734操作系統真象還原 -
$510數字信號處理:原理、算法與應用, 4/e (Digital Signal Processing : Principles, Algorithms and Applications, 4/e) -
$602知識圖譜:方法、實踐與應用 -
雲端深入你我身邊:新一代邊緣運算技術直達$650$514 -
$594統計信號處理基礎 — 估計與檢測理論 (捲I、捲II合集) -
$653信號處理與通信中的凸優化: 從基礎到應用 -
$254GUI 自動化測試開發實戰教程 (Python版)(微課版) -
架構師的自我修煉:技術、架構和未來$534$507 -
$505現代電子戰系統導論, 2/e -
$296電子戰原理與應用 -
$230矩陣分析 -
硬件安全:從 SoC 設計到系統級防禦$834$792 -
$678自適應濾波器原理, 5/e (Adaptive Filter Theory, 5/e) -
$505嵌入式系統實時通信網絡 -
$374雷達極化技術 -
高並發系統實戰派:集群、Redis 緩存、海量存儲、Elasticsearch、RocketMQ、微服務、持續集成等$654$621 -
嵌入式實時操作系統 — 理論基礎$594$564 -
$352微弱信號檢測教程 -
$760PyTorch 電腦視覺實戰:目標偵測、影像處理與深度學習 -
ARM 嵌入式 Linux 系統開發詳解, 3/e$714$678 -
生成式 AI 實戰基於 Transformer、Stable Diffusion、LangChain 和 AI Agent$479$455 -
ChatGPT 萬用手冊 2025 春季號:GPT-4o、o1/o3、GPTs、Canvas、DALL-E 3、Sora、Copilot、Claude 3.5、Gemini 2.0、NotebookLM$680$578 -
精通 Python 網路開發 (Mastering Python Networking, 4/e)$980$774
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$576 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
本書是作者StevenM.Kay關於統計信號處理三捲書中的最後一捲,該捲建立了覆蓋前兩捲的綜合性理論,在設計解決實際問題的優良算法方面幫助讀者開發直觀和專業的方法。本書首先評述開發信號處理算法的方法,包括數學建模、計算機模擬、性能評估。通過展示設計、評估、測試的有用解析結果和實現,將理論與實踐聯繫起來。然後從幾個關鍵的應用領域重點介紹了一些經典的算法。最後引導讀者將算法轉換成MATLAB程序來驗證得到的解。全書主題包括:算法設計方法;信號與噪聲模型的比較和選擇;性能評估、規範、折中、測試和資料;應用大定理的最佳方法;估計、檢測和譜估計算法;完整的案例研究:雷達多普勒中心頻率估計、磁信號檢測、心率監測等。
目錄大綱
第一部分 方法論與通用方法
第1章 引言 2
1.1 動機和目標 2
1.2 核心算法 3
1.3 容易的、難的和不可能的問題 3
1.4 增加成功的概率—提升直覺 8
1.5 應用領域 8
1.6 註意事項 9
1.6.1 信號類型 9
1.6.2 本書的特點和符號表示 9
1.7 小結 10
參考文獻 10
附錄1A 練習解答 11
第2章 算法設計方法 13
2.1 引言 13
2.2 一般方法 13
2.3 信號處理算法設計實例 18
2.4 小結 29
參考文獻 29
附錄2A 多普勒效應的推導 30
附錄2B 練習解答 31
第3章 信號的數學建模 33
3.1 引言 33
3.2 信號模型的分層(分類) 34
3.3 線性與非線性確定性信號模型 37
3.4 參數已知的確定性信號(類型1) 38
3.4.1 正弦信號 38
3.4.2 阻尼指數信號 39
3.4.3 阻尼正弦信號 39
3.4.4 相位調製信號 39
3.4.5 多項式信號 40
3.4.6 週期信號 41
3.5 具有未知參數的確定性信號(類型2) 42
3.5.1 一般考慮 42
3.5.2 多項式信號模型 42
3.5.3 週期信號模型 44
3.5.4 非線性和部分線性信號 47
3.6 具有已知PDF的隨機信號(類型3) 49
3.6.1 一般考慮 49
3.6.2 隨機正弦模型—零均值 51
3.6.3 隨機正弦模型—非零均值 51
3.6.4 貝葉斯線性模型 52
3.6.5 其他具有已知PDF的隨機模型 53
3.7 PDF具有未知參數的隨機信號(類型4) 53
3.8 小結 53
參考文獻 54
附錄3A 練習解答 54
第4章 噪聲的數學建模 57
4.1 引言 57
4.2 一般噪聲模型 57
4.3 高斯白噪聲 59
4.4 高斯色噪聲 61
4.5 一般高斯噪聲 66
4.6 IID非高斯噪聲 71
4.7 隨機相位正弦噪聲 74
4.8 小結 75
參考文獻 76
附錄4A 隨機過程的概念和公式 76
附錄4B 高斯隨機過程 78
附錄4C AR PSD的幾何解釋 79
附錄4D 練習解答 80
第5章 信號模型選擇 84
5.1 引言 84
5.2 信號建模 85
5.2.1 路圖 85
5.3 示例 86
5.4 參數估計 89
5.5 模型階數的選擇 90
5.6 小結 94
參考文獻 94
附錄5A 練習解答 94
第6章 噪聲模型選擇 97
6.1 引言 97
6.2 噪聲建模 97
6.2.1 路圖 97
6.3 示例 99
6.4 噪聲特性的估計 105
6.4.1 均值 106
6.4.2 方差 106
6.4.3 協方差 107
6.4.4 自相關序列 108
6.4.5 均值向量和協方差矩陣 108
6.4.6 PDF 110
6.4.7 PSD 114
6.5 模型階數的選擇 116
6.6 小結 117
參考文獻 118
附錄6A 置信區間 118
附錄6B 練習解答 120
第7章 性能評估、測試與文檔 124
7.1 引言 124
7.2 為什麼採用計算機模擬評估 124
7.3 統計意義下的性能度量指標 125
7.3.1 參數估計的性能度量指標 126
7.3.2 檢測性能的度量指標 127
7.3.3 分類性能度量標準 130
7.4 性能邊界 133
7.5 精確與漸近性能 134
7.6 靈敏度 135
7.7 有效性能比較 136
7.8 性能/複雜性的折中 138
7.9 算法軟件開發 138
7.10 算法文檔 142
7.11 小結 142
參考文獻 143
附錄7A 算法描述文檔中包括的信息檢查表 143
附錄7B 算法描述文檔樣本 145
7B.1 問題與目標 145
7B.2 歷史 145
7B.3 假設 145
7B.4 數學模型 145
7B.5 算法描述 145
7B.6 算法實現 146
7B.7 MATLAB實現 146
7B.8 計算機產生數據的性能 147
7B.9 現場數據的性能 149
7B.10 強/弱關係 149
7B.11 參考文獻 149
7B.12 支持材料 150
附錄7C 練習解答 153
第8章 使用大定理的最佳方法 155
8.1 引言 155
8.2 大定理 156
8.2.1 參數估計 156
8.2.2 檢測 161
8.2.3 分類 163
8.3 線性模型的最佳算法 165
8.3.1 參數估計 166
8.3.2 檢測 167
8.3.3 分類 168
8.4 利用理論導出新結論 169
8.5 實用最佳方法 170
8.5.1 參數估計:最大似然估計 171
8.5.2 檢測 172
8.5.3 分類 173
8.6 所學內容 173
參考文獻 173
附錄8A 參數估計的一些分析 174
8A.1 經典方法 174
8A.2 貝葉斯方法 176
附錄8B 練習解答 177
第二部分 特 定 算 法
第9章 估計算法 182
9.1 引言 182
9.2 信號信息的提取 182
9.3 噪聲/乾擾時的信號增強 199
參考文獻 206
附錄9A 練習解答 207
第10章 檢測算法 209
10.1 引言 209
10.2 已知信號形式(已知信號) 210
10.3 未知信號形式(隨機信號) 215
10.4 未知信號參數(部分已知信號) 218
參考文獻 224
附錄10A 練習解答 224
第11章 譜估計 226
11.1 引言 226
11.2 非參量(傅裡葉)方法 227
11.3 參量(基於模型)譜分析 232
11.3.1 AR模型階數的估計 237
11.4 時變功率譜密度 238
參考文獻 238
附錄11A 傅裡葉譜分析及濾波 238
附錄11B 補零及精度問題 240
附錄11C 練習解答 241
第三部分 實 例 擴 展
第12章 複數據擴展 244
12.1 引言 244
12.2 覆信號 247
12.3 複噪聲 247
12.3.1 複隨機變量 247
12.3.2 複隨機矢量 248
12.3.3 複隨機過程 249
12.4 複最小均方及線性模型 251
12.5 複數據的算法擴展 252
12.5.1 複數據的估計 252
12.5.2 複數據的檢測 258
12.5.3 複數據的譜估計 261
12.6 其他擴展 263
12.7 章節總結 264
參考文獻 264
附錄12A 練習解答 264
第四部分 真 實 應 用
第13章 案例—統計問題 270
13.1 引言 270
13.2 估計問題—雷達多普勒中心頻率 270
13.3 已學內容 277
參考文獻 278
附錄13A AR功率譜密度的3 dB帶寬 278
附錄13B 練習解答 279
第14章 案例研究—檢測問題 280
14.1 引言 280
14.2 估計問題—磁信號檢測 280
14.3 已學內容 290
參考文獻 291
附錄14A 練習解答 291
第15章 案例研究—譜估計問題 292
15.1 引言 292
15.2 提取肌肉噪聲 294
15.3 肌肉噪聲的譜分析 296
15.4 改善ECG波形 297
15.5 已學內容 299
參考文獻 299
附錄15A 練習解答 299
附錄A 符號和縮寫術語表 301
附錄B MATLAB簡要介紹 305
附錄C 隨書光盤內容的描述 309
