知識圖譜導論
陳華鈞
- 出版商: 電子工業
- 出版日期: 2021-02-01
- 定價: $648
- 售價: 8.5 折 $551
- 語言: 簡體中文
- 頁數: 324
- 裝訂: 平裝
- ISBN: 7121406993
- ISBN-13: 9787121406997
-
相關分類:
Natural Language Processing
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$1,010自然語言處理綜論, 2/e (Speech and Language Processing, 2/e) -
$1,188自然語言電腦形式分析的理論與方法 (精) -
PyTorch 深度學習與自然語言中文處理$420$328 -
$327自然語言處理實踐:聊天機器人技術原理與應用 -
中文自然語言處理實戰:聊天機器人與深度學習整合應用$450$351 -
PyTorch 自然語言處理|以深度學習建立語言應用程式 (Natural Language Processing with PyTorch)$580$458 -
Introduction to Machine Learning, 4/e (Hardcover)$1,690$1,656 -
人類智慧的神殿:AI 知識圖譜實作$890$703 -
知識圖譜與深度學習$594$564 -
現代自然語言生成$474$450 -
最新 AI 技術:知識圖譜集技術概念大成$980$774 -
圖深度學習$708$673 -
核心開發者親授!PyTorch 深度學習攻略 (Deep Learning with Pytorch)$1,000$790 -
$559自然語言處理:基於預訓練模型的方法 -
$505從零構建知識圖譜 : 技術、方法與案例 -
$602工業級知識圖譜:方法與實踐 -
$505基於混合方法的自然語言處理:神經網絡模型與知識圖譜的結合 -
$607視覺:對人類如何表示和處理視覺信息的計算研究 -
自然語言理解與行業知識圖譜:概念、方法與工程落地$714$678 -
$602知識圖譜與認知智能:基本原理、關鍵技術、應用場景與解決方案 -
知識圖譜:認知智能理論與實戰$948$901 -
$805知識圖譜研究與領域實踐 -
$422自然語言處理與應用 -
$314ChatGPT 寫作超簡單 -
$311AI智慧化辦公室:ChatGPT使用方法與技巧從入門到精通一本書開啟AI高效辦公時代,成為AI時代的先驅
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
知識圖譜的發展歷史源遠流長,從經典人工智能的核心命題——知識工程,到因特網時代的語義Web,再到當下很多領域構建的數千億級別的現代知識圖譜。知識圖譜兼具人工智能、大數據和因特網的多重技術基因,是知識表示、表示學習、自然語言處理、圖數據庫和圖計算等多個領域技術的綜合集成。本書全面覆蓋了知識圖譜的表示、存儲、獲取、推理、融合、問答和分析等七大方面,100多個基礎知識點的內容,同時囊括多模態知識圖譜、知識圖譜與圖神經網絡的融合、本體表示學習、事理知識圖譜,以及知識增強的語言預訓練模型等新熱點、新發展。作為一本導論性質的書,本書希望幫助初學者梳理知識圖譜的基本知識點和關鍵技術要素,也希望幫助技術決策者建立知識圖譜的整體視圖和系統工程觀,為前沿科研人員拓展創新視野和研究方向。本書在技術廣度和深度上兼具極強的參考性,適合高等院校的電腦專業師生閱讀,也可供電腦相關行業的管理者和研發人員參考。
作者簡介
陳華鈞,浙江大學計算機科學與技術學院教授。
主要研究方向為知識圖譜、自然語言處理、大數據系統等。
在WWW/IJCAI/AAAI/ACL/VLDB/ICDE, IEEE CIM, IEEE IS, TKDE, Briefings in Bioinformatics 等國際頂級會議和期刊上發表多篇論文。
曾獲國際語義網會議ISWC最佳論文獎、教育部技術發明一等獎、國家科技進步二等獎、中國中文信息學會錢偉長科技獎一等獎、阿裡巴巴優秀學術合作獎、中國工信出版傳媒集團優秀出版物一等獎等獎勵。
牽頭髮起OpenKG,浙江大學阿裡巴巴知識引擎聯合實驗室主任、浙江省大數據智能計算重點實驗室副主任、中國人工智能學會知識工程專委會副主任、中國中文信息學會語言與知識計算專委會副主任、全國知識圖譜大會CCKS2020 大會主席、國際語義技術聯合會議JIST2019大會主席、Elsevier Journal of Big Data Research Editor in Chief。
目錄大綱
目錄
第1章知識圖譜概述 1
1.1 語言與知識 2
1.2 知識圖譜的起源 7
1.3 知識圖譜的價值12
1.4 知識圖譜的技術內涵16
1.5 建立知識圖譜的系統工程觀20
第2章知識圖譜的表示21
2.1 什麼是知識表示22
2.2 人工智能歷史發展長河中的知識表示24
2.3 知識圖譜的符號表示方法28
2.4 知識圖譜的向量表示方法32
2.5 總結38
第3章知識圖譜的存儲與查詢39
3.1 基於關係型數據庫的知識圖譜存儲40
3.2 基於原生圖數據庫的知識圖譜存儲44
3.3 原生圖數據庫實現原理淺析52
3.4 總結55
第4章知識圖譜的獲取與構建57
4.1 重新理解知識工程與知識獲取58
4.2 實體識別62
4.3 關係抽取71
4.4 屬性補全81
4.5 概念抽取83
4.6 事件識別與抽取87
4.7 知識抽取技術前沿91
4.8 總結95
第5章知識圖譜推理96
5.1 推理簡述97
5.2 知識圖譜推理簡介101
5.3 基於符號邏輯的知識圖譜推理108
5.4 基於表示學習的知識圖譜推理117
5.5 總結144
第6章知識圖譜融合146
6.1 知識圖譜融合概述147
6.2 概念層融合——本體匹配150
6.3 實例層的融合——實體對齊155
6.4 知識融合技術前沿159
6.5 總結162
第7章知識圖譜問答163
7.1 智能問答概述164
7.2 基於問句模板的知識圖譜問答172
7.3 基於語義解析的知識圖譜問答178
7.4 基於檢索排序的知識圖譜問答185
7.5 基於深度學習的知識圖譜問答188
7.6 總結195
第8章圖算法與圖數據分析196
8.1 圖的基本知識197
8.2 基礎圖算法204
8.3 圖表示學習與圖神經網絡211
8.4 知識圖譜與圖神經網絡224
8.5 總結232
第9章知識圖譜技術發展233
9.1 多模態知識圖譜234
9.2 知識圖譜與語言預訓練248
9.3 事理知識圖譜255
9.4 知識圖譜與低資源學習261
9.5 結構化知識預訓練276
9.6 知識圖譜與區塊鏈293ta Research Editor in Chief。
