圖表示學習 Graph Representation Learning
William Hamilton AI TIME
- 出版商: 電子工業
- 出版日期: 2021-06-01
- 定價: $654
- 售價: 8.5 折 $556
- 語言: 簡體中文
- 頁數: 208
- 裝訂: 平裝
- ISBN: 712141077X
- ISBN-13: 9787121410772
-
相關分類:
DeepLearning
- 此書翻譯自: Graph Representation Learning
立即出貨
買這商品的人也買了...
-
無瑕的程式碼 - 敏捷軟體開發技巧守則 (Clean Code: A Handbook of Agile Software Craftsmanship)$580$452 -
TED 最撼動演說 101:用一句話解答你的生命問題,18 分鐘改變你,改變這世界!$280$238 -
Lie Groups, Lie Algebras, and Some of Their Applications (Paperback)$1,290$1,226 -
成長駭客 Growth Hacker -- 未來十年最被需要的新型人才,用低成本的創意思考和分析技術,讓創業公司的用戶$420$357 -
英語簡報演說技巧(附MP3)$450$428 -
邁向大數據的第一步!R 語言程式設計精要 (R for Everyone: Advanced Analytics and Graphics, 2/e)$450$383 -
Lie Groups, Lie Algebras, and Representations: An Elementary Introduction (Hardcover)$3,540$3,363 -
Python 接班人出世:最新科學專用語言 Julia 入門實戰$690$545 -
$551深度學習推薦系統 -
知識圖譜與深度學習$594$564 -
Graph Representation Learning (Paperback)$2,140$2,033 -
$374圖神經網絡:基礎與前沿 -
$356圖神經網絡導論 -
圖深度學習$708$673 -
$2,166Python and R for the Modern Data Scientist: The Best of Both Worlds -
深度學習的 16 堂課:CNN + RNN + GAN + DQN + DRL, 看得懂、學得會、做得出! (Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence)$620$489 -
跟著 Docker 隊長,修練 22天就精通 - 搭配 20小時作者線上教學,無縫接軌 Microservices、Cloud-native、Serverless、DevOps 開發架構$880$695 -
$7062D 電腦視覺:原理、算法及應用 -
$7603D 電腦視覺:原理、算法及應用 -
$607Pandas 數據預處理詳解 -
超越多顯卡多機器:分散式機器學習超速實戰$1,000$790 -
突破困境!企業開源虛擬化管理平台:使用 Proxmox Virtual Environment (iThome鐵人賽系列書)$620$484 -
AutoML 自動化機器學習:用 AutoKeras 超輕鬆打造高效能 AI 模型 (Automated Machine Learning with AutoKeras: Deep learning made accessible for everyone with just few lines of coding)$690$545 -
Lie Groups and Lie Algebras - A Physicist's Perspective (Hardcover)$900$855 -
圖深度學習從理論到實踐$534$507
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
75折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$375 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
本書提供了一份關於圖表示學習的綜述。首先,本書討論圖表示學習的目標及圖論和網絡分析的關鍵方法論。然後,本書介紹並回顧了學習節點嵌入的方法,包括基於隨機遊走的方法以及在知識圖譜上的應用。再後,本書對高度成功的圖神經網絡( Graph Neural Network, GNN)進行了技術上的綜合介紹, GNN已成為圖數據深度學習領域占主導地位且迅速發展的範式。最後,本書總結了針對圖的深度生成模型的最新進展,這是圖表示學習新生但發展迅速的子集。
作者簡介
威廉·漢密爾頓(William Hamilton)是麥吉爾大學(McGill University)計算機科學系的助理教授,也是加拿大高等研究院(Canadian Institute for Advanced Research, CIFAR)AI 方向的主席、GraphSAGE 的作者。
他專註於圖表示學習及其在計算社會科學和生物學中的應用。
近年來,他在機器學習和網絡科學領域的頂級會議發表了20 多篇關於圖表示學習的論文,並且參與組織了關於該主題的幾次大型研討會,分享了多份重磅教程。
他的工作獲得了多個獎項的認可,其中包括2017 年美國科學院Cozzarelli最佳論文獎和2018 年斯坦福大學計算機科學系Arthur Samuel 最佳博士論文獎等。
AI TIME是2019年由清華大學人工智能研究院張鈸院士和清華大學計算機系唐傑教授、李涓子教授等人聯合發起的圈子。
AI TIME是一個開放、包容的組織,專註於探索AI科學、發揚科學思辨精神。
我們邀請各界人士辯論AI本質,介紹學術前沿、展示研究機構風採,鼓勵所有參與者用辯論的形式,平等、自由、充分地交流,探討人工智能和人類未來之間的矛盾,探索人工智能領域的未來。
目錄大綱
第一部分背景介紹
第1 章引言.............................................. ................................................. 2
1.1 什麼是圖.............................................. ............................................ 3
1.2 圖機器學習.............................................. ........................................ 6
第2 章背景與傳統方法........................................... ................................. 13
2.1 圖統計特徵與核方法........................................... .......................... 14
2.2 鄰域重疊檢測............................................. ................................... 23
2.3 圖的拉普拉斯矩陣和圖的譜方法..................................... ............. 32
2.4 面向表示學習.............................................. .................................. 41
第二部分節點嵌入
第3 章鄰域節點重構.......................................... ...................................... 44
3.1 編碼-解碼框架............................................. .................................. 45
3.2 基於因式分解的方法........................................... .......................... 49
3.3 隨機遊走嵌入表示............................................ ............................. 52
3.4 shallow embedding 的局限性............................................ ............. 56
第4 章多關係數據及知識圖譜......................................... ......................... 58
4.1 重建多關係數據............................................. ................................ 59
4.2 損失函數............................................... ......................................... 60
4.3 多關係解碼器............................................. ................................... 64
4.4 解碼器的性能表徵............................................ ............................. 68
第三部分圖神經網絡(GNN)
第5 章圖神經網絡(GNN)模型........................................ ...................... 72
5.1 神經消息傳遞.............................................. .................................. 74
5.2 廣義鄰域聚合............................................. ................................... 80
5.3 廣義的更新方法............................................. ................................ 89
5.4 邊特徵和多元關係GNN ........................................... ..................... 96
5.5 圖池化.............................................. .............................................. 99
5.6 通用的消息傳遞方法............................................ ....................... 102
第6 章圖神經網絡(GNN)的實現....................................... .................. 104
6.1 應用和損失函數............................................. .............................. 104
6.2 效率問題和節點採樣............................................ ....................... 110
6.3 參數共享與正則化............................................ ........................... 112
第7 章圖神經網絡(GNN)的理論動機...................................... ............ 114
7.1 GNN與圖捲積............................................ ................................. 115
7.2 GNN和概率圖模型............................................ ......................... 135
7.3 GNN與圖同構............................................ ................................. 141
第四部分生成圖模型
第8 章傳統圖生成方法........................................... ............................... 158
8.1 傳統方法概述.............................................. ................................ 159
8.2 ERDÖS–RÉNYI 模型............................................. ..................... 159
8.3 隨機塊模型.............................................. .................................... 160
8.4 優先鏈接模型.............................................. ................................ 161
8.5 傳統應用............................................... ....................................... 163
第9 章深度生成模型............................................ .................................. 165
9.1 VAE 方法............................................... ...................................... 166
9.2 對抗方法............................................... ....................................... 176
9.3 自回歸模型.............................................. .................................... 178
9.4 圖生成的評估............................................. ................................. 184
9.5 分子圖生成.............................................. .................................... 185
