深度學習的計算方法:理論、實踐與應用 Computational Methods for Deep Learning: Theoretic, Practice and Applications
Yan, Wei Qi 周浦城,秦曉燕,鮑蕾
- 出版商: 電子工業
- 出版日期: 2021-10-01
- 定價: $372
- 售價: 7.9 折 $294
- 語言: 簡體中文
- 頁數: 192
- 裝訂: 平裝
- ISBN: 7121421380
- ISBN-13: 9787121421389
-
相關分類:
DeepLearning
- 此書翻譯自: Computational Methods for Deep Learning: Theoretic, Practice and Applications
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$352MATLAB 神經網絡原理與實例精解 -
$828清華開發者書庫:機器人模擬與編程技術 -
$774機器人學、機器視覺與控制 — MATLAB 算法基礎 -
$239卡爾曼濾波原理及應用:MATLAB 模擬 -
滑模變結構控制 MATLAB 模擬:基本理論與設計方法, 4/e$708$673 -
$417人工智能:智能機器人 -
無線定位技術$474$450 -
強化式學習:打造最強 AlphaZero 通用演算法$780$663 -
統計學習要素:機器學習中的數據挖掘、推斷與預測, 2/e (The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2/e)$954$906 -
認識人工智慧-第四波工業革命$420$378 -
$454數據科學工程實踐:用戶行為分析與建模、A/B實驗、SQLFlow -
$352智能機器人開發與實踐 -
$403可解釋機器學習:模型、方法與實踐 -
集成式學習:Python 實踐!整合全部技術,打造最強模型 (Hands-On Ensemble Learning with Python: Build highly optimized ensemble machine learning models using scikit-learn and Keras)$750$638 -
$474人工智能算法 -
$352Python 深度強化學習 — 使用 PyTorch, TensorFlow 和 OpenAI -
可程式控制-含 PLC 與機電整合丙級術科試題 (第三版)(附範例光碟)$460$414 -
深度強化學習理論與實踐$534$507 -
$301控制系統的模擬與分析 — 基於 MATLAB 的應用 -
金融風險管理的機器學習應用|使用 Python (Machine Learning for Financial Risk Management with Python: Algorithms for Modeling Risk)$680$537 -
數據網格|大規模提供資料驅動價值 (Data Mesh: Delivering Data-Driven Value at Scale)$680$537 -
實戰 Tableau 資料分析與視覺化分析$480$379 -
精通 API 架構|設計、營運和發展基於 API 的系統 (Mastering API Architecture: Design, Operate, and Evolve Api-Based Systems)$680$537 -
ChatGPT 開發手冊 - 用 OpenAI API ‧ LangChain ‧ Embeddings 設計 Plugin、LINE/Discord bot、股票分析與客服自動化助理$750$593 -
結構方程模式 : 原理與應用, 3/e (使用 Mplus, LISREL(SIMPLIS), R, AMOS)$730$694
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
VIP 95折
深入淺出 SSD 測試 : 固態存儲測試流程 方法與工具$594$564 -
VIP 95折
MCP 開發從入門到實戰$515$489 -
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
RISC-V 架構 DSP 處理器設計$534$507 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
85折
$454RAG 實踐權威指南:構建精準、高效大模型之道 -
VIP 95折
CUDA 並行編程與性能優化$714$678 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
VIP 95折
大模型驅動的具身智能 架構,設計與實現$534$507 -
VIP 95折
納米級CMOS VLSI電路(可制造性設計)$474$450 -
VIP 95折
Manus應用與AI Agent設計指南:從入門到精通$359$341 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
VIP 95折
芯片的較量 (日美半導體風雲)$414$393 -
VIP 95折
Manus AI 智能體從入門到精通$294$279 -
87折
$981深度學習:基礎與概念 -
85折
$505GitHub Copilot 編程指南 -
87折
$469Cursor 與 Copilot 開發實戰 : 讓煩瑣編程智能化 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
Verilog HDL 計算機網絡典型電路算法設計與實現$354$336 -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
85折
$505GitHub Copilot 編程指南 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673 -
VIP 95折
深入淺出 Docker, 2/e$419$398 -
85折
$658Unity 特效制作:Shader Graph 案例精講 -
79折
$275零基礎玩轉國產大模型DeepSeek -
VIP 95折
人工智能大模型:機器學習基礎$774$735 -
VIP 95折
RAG 極簡入門:原理與實踐$419$398 -
VIP 95折
大模型實戰 : 從零實現 RAG 與 Agent 系統$419$398 -
VIP 95折
算法趣學(第2版)$348$331 -
VIP 95折
大模型理論與實踐——打造行業智能助手$354$336 -
VIP 95折
大模型應用開發 RAG 實戰課$599$569 -
85折
$509生成式人工智能 (基於 PyTorch 實現) -
VIP 95折
機器人抓取力學$894$849 -
VIP 95折
集成電路版圖設計從入門到精通$474$450 -
VIP 95折
Java 學習筆記, 6/e$839$797
相關主題
商品描述
本書作為深度學習方面的入門書籍,目的是使讀者通過學習,理解和掌握深度學習背後的數學原理和計算方法,並將其用於指導理論分析和實踐開發。全書共8章。第1、2章主要介紹了深度學習的相關概念、發展簡史、主要進展,以及典型的深度學習平臺(MATLAB和TensorFlow)、數據增廣技術和相關數學基礎;第3~5章詳細闡述了深度學習的典型網絡模型,包括捲積神經網絡、循環神經網絡、自編碼器、生成對抗網絡及深度Q-學習等模型,重點介紹了這些模型背後的數學原理;第6章重點介紹了膠囊網絡與流形學習;第7章介紹了玻爾茲曼機及其變體,包括受限玻爾茲曼機、深度玻爾茲曼機及概率圖模型;第8章介紹了遷移學習、孿生網絡、集成學習及深度學習方面的重要工作。
作者簡介
Wei Qi Yan,博士,新西蘭奧克蘭理工大學(Auckland University of Technology,AUT)副教授。研究領域是智能監控、深度學習、計算機視覺和多媒體技術。 AUT機器人與視覺中心主任,中國科學院兼職教授、博士生導師。
周浦城,博士,副教授,先後主持或參加國家863、自然科學基金、武器裝備預研、軍內科研等課題20餘項,公開發表論文80餘篇,其中SCI檢索3篇、EI檢索45篇。
目錄大綱
第1章 概述 1
1.1 引言 1
1.2 深度學習簡介 4
1.3 深度學習發展簡史 7
1.4 深度學習典型應用 15
1.5 深度學習獲獎論文 17
1.6 思考題 19
參考文獻 19
第2章 深度學習平臺 29
2.1 引言 29
2.2 基於MATLAB的深度學習 31
2.3 基於TensorFlow的深度學習 35
2.4 數據增廣 41
2.5 數學基礎 42
2.6 思考題 48
參考文獻 48
第3章 捲積神經網絡和循環神經網絡 51
3.1 捲積神經網絡 51
3.1.1 R-CNN 53
3.1.2 Mask R-CNN 54
3.1.3 YOLO 55
3.1.4 SSD 57
3.1.5 DenseNet和ResNet 57
3.2 循環神經網絡和時間序列分析 58
3.2.1 循環神經網絡 59
3.2.2 時間序列分析 63
3.3 隱馬爾可夫模型 68
3.4 函數空間 70
3.5 向量空間 72
3.5.1 賦範空間 74
3.5.2 希爾伯特空間 75
3.6 思考題 79
參考文獻 79
第4章 自編碼器和生成對抗網絡 87
4.1 自編碼器 87
4.2 正則自編碼器 88
4.3 生成對抗網絡 91
4.4 信息論 95
4.5 思考題 100
參考文獻 101
第5章 強化學習 103
5.1 引言 103
5.2 貝爾曼方程 104
5.3 深度Q-學習 107
5.4 優化 111
5.5 數據擬合 112
5.6 思考題 116
參考文獻 116
第6章 膠囊網絡與流形學習 119
6.1 膠囊網絡 119
6.2 流形學習 123
6.3 思考題 128
參考文獻 129
第7章 玻爾茲曼機 131
7.1 玻爾茲曼機概述 131
7.2 受限玻爾茲曼機 132
7.3 深度玻爾茲曼機 134
7.4 概率圖模型 136
7.5 思考題 142
參考文獻 142
第8章 遷移學習與集成學習 145
8.1 遷移學習 145
8.1.1 遷移學習的定義 145
8.1.2 Taskonomy 147
8.2 孿生網絡 148
8.3 集成學習 149
8.4 深度學習的重要工作 162
8.5 思考題 163
參考文獻 163
附錄A 術語 165
