買這商品的人也買了...
-
計算機組織與設計 : 硬體/軟體的介面, 5/e (Patterson: Computer Organization and Design: The Hardware/Software Interface, 5/e)$1,250$1,188 -
$294NLTK 基礎教程 — 用 NLTK 和 Python 庫構建機器學習應用 (NLTK Essentials) -
$117推薦系統 -
金融人才 × 機器學習聯手出擊:專為 FinTech 領域打造的機器學習指南 (Machine Learning for Finance)$690$538 -
統計學習要素:機器學習中的數據挖掘、推斷與預測, 2/e (The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2/e)$954$906 -
智能搜索和推薦系統:原理、算法與應用$474$450 -
基於 BERT 模型的自然語言處理實戰$828$787 -
$658構建企業級推薦系統:算法、工程實現與案例分析 -
實用推薦系統$714$678 -
$505AI 源碼解讀 : 推薦系統案例 (Python版) -
OpenCV 影像創意邁向 AI 視覺王者歸來 (全彩印刷)$890$668 -
$403檢索匹配:深度學習在搜索、廣告、推薦系統中的應用 -
$378智能推薦系統開發實戰 -
輕鬆學量子程式設計|從量子位元到量子演算法$520$411 -
大規模推薦系統實戰$599$569 -
演算法生存指南$800$632 -
玩真的!Git ✕ GitHub 實戰手冊 - coding 實境、協同開發、雲端同步, 用最具臨場感的開發實例紮實學會! (Git for Programmers)$580$458 -
$505推薦系統實戰寶典 -
$374動手學推薦系統 — 基於 PyTorch 的算法實現 (微課視頻版) -
ASP.NET Core 6 框架揭秘:跨平台 Web 開發全面解析 (上冊)$820$640 -
ASP.NET Core 6 框架揭秘:跨平台 Web 開發全面解析 (下冊)$860$671 -
量子科技入門$420$378 -
$458深度學習與醫學圖像處理 -
零基礎學會 Python 程式交易:一本讀懂 Python 實作金融資產配置$600$468 -
機器學習圖解$768$730
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
75折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$375 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
推薦系統是因特網時代極具商業價值的人工智能應用之一,30 年來持續受到學術界和工業界的廣泛關註。本書作者以一線研發人員的視角和經驗,對推薦系統進行總結,嘗試從原理與實踐兩個角度為讀者剖析推薦系統。本書首先從原理上介紹各類經典推薦算法及前沿的深度學習推薦算法,然後分析推薦系統領域發展的前沿話題和未來方向,最後結合微軟的開源項目Microsoft Recommenders 介紹推薦系統的實踐經驗。讀者可以基於本書提供的源代碼,深入學習推薦算法的設計原理和實踐方式,並可以基於本書從零開始快速搭建一個準確、高效的推薦系統。本書不僅適合因特網、大數據等相關領域技術人員閱讀,也適合高等院校電腦、軟件工程、人工智能等專業的本科生和研究生參考。
目錄大綱
目錄
1 章推薦系統概述1
1.1 推薦系統發展歷史/2
1.1.1 基於內容的推薦算法/2
1.1.2 基於協同過濾的推薦算法/3
1.1.3 基於深度學習的推薦算法/5
1.2 推薦系統原理/6
1.2.1 機器學習視角下的推薦系統/6
1.2.2 深度學習推薦系統新範式/12
1.2.3 推薦系統常見架構/15
1.3 推薦系統應用價值/17
1.3.1 推薦系統的業務價值/17
1.3.2 推薦、搜索與廣告/19
1.3.3 推薦系統的行業應用/20
1.4 小結/22
2 章經典推薦算法/25
2.1 基於內容的推薦算法/26
2.1.1 基於結構化內容的推薦/27
2.1.2 基於非結構化內容的推薦/33
2.1.3 基於內容推薦的優勢與局限/41
2.2 基於協同過濾的推薦算法/42
2.2.1 基於記憶的協同過濾算法/42
2.2.2 矩陣分解方法與因子分解機方法/50
2.3 小結/58
3 章深度學習基礎/59
3.1 神經網絡與前饋計算/60
3.2 反向傳播算法/61
3.3 多種深度神經網絡/64
3.3.1 捲積神經網絡/64
3.3.2 循環神經網絡/68
3.3.3 註意力機制/72
3.3.4 序列建模與預訓練/75
3.4 小結/78
4 章基於深度學習的推薦算法/79
4.1 深度學習與協同過濾/80
4.1.1 基於受限玻爾茲曼機的協同過濾/80
4.1.2 基於自編碼器的協同過濾/82
4.1.3 深度學習與矩陣分解/84
4.1.4 基於鄰域的深度協同過濾/87
4.2 深度學習與特徵交互/88
4.2.1 AFM 模型/88
4.2.2 PNN 模型/89
4.2.3 Wide & Deep 模型/91
4.2.4 DeepFM 模型/93
4.2.5 DCN 模型/94
4.2.6 DeepFM 模型/96
4.2.7 AutoInt 模型/99
4.2.8 特徵交互的其他思路/100
4.3 圖表示學習與推薦系統/100
4.3.1 圖嵌入和圖神經網絡基礎/101
4.3.2 圖神經網絡與協同過濾/106
4.3.3 圖神經網絡與社會化推薦/110
4.4 序列與基於會話的推薦/114
4.4.1 序列推薦的動機、定義與分類/114
4.4.2 序列推薦算法的分類/117
4.4.3 基於循環神經網絡的序列推薦/122
4.4.4 基於非自回歸神經網絡的序列建模/125
4.4.5 基於自註意力機制的序列推薦/127
4.4.6 基於記憶神經網絡的序列推薦/129
4.4.7 用戶、物品雙序列建模/133
4.5 結合知識圖譜的推薦系統/134
4.5.1 加強用戶--物品交互建模/135
4.5.2 圖譜建模與物品推薦的聯合學習/141
4.5.3 知識圖譜增強物品的表示/146
4.5.4 可解釋性/151
4.6 基於強化學習的推薦算法/158
4.6.1 基於多臂老虎機的推薦算法/160
4.6.2 強化學習基礎/162
4.6.3 基於強化學習的推薦算法/ 164
4.6.4 深度強化學習的建模與優化/166
4.7 小結/170
5 章推薦系統前沿話題/171
5.1 推薦算法研究熱點/172
5.1.1 基於對話的推薦/172
5.1.2 因果推薦/173
5.1.3 常識推薦/174
5.2 推薦系統應用挑戰/175
5.2.1 多源數據融合/175
5.2.2 可擴展性/176
5.2.3 功能性評估/178
5.2.4 冷啟動問題/179
5.3 負責任的推薦/180
5.3.1 用戶隱私/180
5.3.2 可解釋性/183
5.3.3 算法偏見/187
5.4 小結/189
6 章推薦系統實踐/191
6.1 工業級推薦系統實現與架構/192
6.1.1 工業級推薦系統的基本特徵/192
6.1.2 推薦系統的常見架構/193
6.1.3 推薦系統的工業實現/196
6.2 推薦系統典型應用實踐/198
6.2.1 數據管理與預處理/201
6.2.2 算法選擇與模型訓練/208
6.2.3 評估指標與評估方式/230
6.3 基於雲平臺的推薦系統開發與運維/236
6.3.1 基於雲平臺的推薦系統的優點/236
6.3.2 基於雲平臺的推薦系統開發與運維/237
6.4 總結/241
7 章總結與展望/243
