深度學習與目標檢測, 2/e
杜鵬 等
- 出版商: 電子工業
- 出版日期: 2022-11-01
- 定價: $708
- 售價: 7.9 折 $559
- 語言: 簡體中文
- 頁數: 288
- ISBN: 7121444429
- ISBN-13: 9787121444425
-
相關分類:
DeepLearning
立即出貨
買這商品的人也買了...
-
精通正規表達式, 3/e (Mastering Regular Expressions, 3/e)$780$616 -
$280產品經理面試攻略 -
$301嵌入式 Linux 與物聯網軟件開發 : C語言內核深度解析 -
實戰機器學習|以深度學習演算企業資料$450$356 -
$556程序員代碼面試指南:IT名企算法與數據結構題目最優解, 2/e -
$447Linux 設備驅動開發 -
Python 機器學習與深度學習特訓班:看得懂也會做的AI人工智慧實戰, 2/e (附120分鐘影音教學/範例程式)$520$411 -
遊戲數值設計$539$512 -
ASP.NET Core 6 實戰守則:超易懂的跨平台開發入門教學 (iT邦幫忙鐵人賽系列書)$600$468 -
大話 Flutter 跨平台應用開發 -- 入門篇:物聯網、邊緣計算、多載具應用,新世代萬用技能$620$484 -
今晚來點 Web 前端效能優化大補帖:一次搞定指標 × 工具 × 技巧,打造超高速網站(iThome鐵人賽系列書)$650$507 -
$454基於 TensorFlow 的圖像生成 -
$505利用 Mendix 構建低代碼應用程序 -
看完這本就會懂!帶你無痛提升 JavaScript 面試力:精選 55道前端工程師的核心問題 × 求職加分模擬試題解析$680$530 -
Python 統計分析:生命科學應用 (An Introduction to Statistics with Python: With Applications in the Life Sciences)$500$375 -
科學方法賺大錢 - Python 進行商品期貨量化交易$720$569 -
不靠框架硬功夫 - Scikit-learn 手刻機器學習每行程式碼$780$390 -
大話設計模式:JAVA 風雲再起彩色加強版$880$695 -
凡人也能懂的白話人工智慧演算法 (Grokking Artificial Intelligence Algorithms)$580$435 -
Spring 實戰, 6/e$659$626 -
運算思維程式講堂:打好 C++ 基礎必修課$560$437 -
三國鼎立唯一開源 CPU 架構 - RISC-V 處理器設計快速上手$780$616 -
這場遊戲不是夢,全面進化的量子文明時代$450$351 -
提升程式設計的運算思維力|國際程式設計競賽之演算法原理、題型、解題技巧與重點解析, 2/e$680$510 -
Python:股票 × ETF 量化交易實戰 105個活用技巧$660$515
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
75折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$375 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
本書的寫作初衷是,從學者的角度,用一種通俗易懂的方式,將基於深度學習的目標檢測的相關論文中的理論和方法呈現給讀者,同時針對作者在深度學習教學過程中遇到的難點,進行深入的分析和講解。本書側重對捲積神經網絡的介紹,而深度學習的內容不止於此。所以,作者將深度學習分為有監督學習、無監督學習和強化學習三類,將圖像分類、目標檢測、人臉識別、語音識別、雙向生成對抗網絡和AlphaGo等應用場景歸入不同的類別,並分別對其原理進行了概括性的講解。本書適合有一定深度學習或目標檢測學習基礎的學生、研究者、從業者閱讀。
目錄大綱
第1章 深度學習概述 2
1.1 深度學習發展簡史 2
1.2 有監督學習 4
1.2.1 圖像分類 4
1.2.2 目標檢測 6
1.2.3 人臉識別 10
1.2.4 語音識別 13
1.3 無監督學習 17
1.3.1 無監督學習概述 18
1.3.2 雙向生成對抗網絡 18
1.4 強化學習 21
1.4.1 AlphaGo 22
1.4.2 AlphaGo Zero 24
1.5 小結 25
參考資料 25
第2章 深度神經網絡 28
2.1 神經元 28
2.2 感知機 31
2.3 前向傳遞 32
2.3.1 前向傳遞的流程 33
2.3.2 激活函數 34
2.3.3 損失函數 38
2.4 後向傳遞 41
2.4.1 後向傳遞的流程 41
2.4.2 梯度下降 41
2.4.3 參數修正 43
2.5 防止過擬合 45
2.5.1 dropout 46
2.5.2 正則化 46
2.6 小結 47
第3章 捲積神經網絡 48
3.1 捲積層 49
3.1.1 valid捲積 49
3.1.2 full捲積 51
3.1.3 same捲積 52
3.2 池化層 53
3.3 反捲積 54
3.4 感受野 56
3.5 捲積神經網絡實例 57
3.5.1 LeNet-5 58
3.5.2 AlexNet 60
3.5.3 VGGNet 63
3.5.4 GoogLeNet 66
3.5.5 ResNet 76
3.5.6 MobileNet 77
3.6 小結 79
進 階 篇
第4章 兩階段目標檢測方法 82
4.1 R-CNN 82
4.1.1 算法流程 82
4.1.2 訓練過程 83
4.2 SPP-Net 87
4.2.1 網絡結構 87
4.2.2 空間金字塔池化 88
4.3 Fast R-CNN 89
4.3.1 感興趣區域池化層 90
4.3.2 網絡結構 91
4.3.3 全連接層計算加速 92
4.3.4 目標分類 93
4.3.5 邊界框回歸 94
4.3.6 訓練過程 95
4.4 Faster R-CNN 99
4.4.1 網絡結構 100
4.4.2 RPN 101
4.4.3 訓練過程 107
4.5 R-FCN 109
4.5.1 R-FCN網絡結構 110
4.5.2 位置敏感的分數圖 111
4.5.3 位置敏感的RoI池化 111
4.5.4 R-FCN損失函數 113
4.5.5 Caffe網絡模型解析 113
4.5.6 U-Net 117
4.5.7 SegNet 118
4.6 Mask R-CNN 119
4.6.1 實例分割簡介 119
4.6.2 COCO數據集的像素級標註 121
4.6.3 網絡結構 121
4.7 小結 125
參考資料 125
第5章 單階段目標檢測方法 126
5.1 SSD 126
5.1.1 default box 126
5.1.2 網絡結構 127
5.1.3 Caffe網絡模型解析 128
5.1.4 訓練過程 137
5.2 RetinaNet 138
5.2.1 FPN 139
5.2.2 聚焦損失函數 140
5.3 RefineDet 142
5.3.1 網絡模型 142
5.3.2 Caffe網絡模型解析 144
5.3.3 訓練過程 153
5.4 YOLO 154
5.4.1 YOLO v1 154
5.4.2 YOLO v2 157
5.4.3 YOLO v3 159
5.5 目標檢測算法應用場景舉例 161
5.5.1 高速公路坑洞檢測 161
5.5.2 息肉檢測 162
5.6 小結 163
參考資料 164
應 用 篇
第6章 肋骨骨折檢測 166
6.1 國內外研究現狀 166
6.2 解決方案 168
6.3 預處理 168
6.4 肋骨骨折檢測 169
6.5 實驗結果分析 170
6.6 小結 172
參考資料 172
第7章 肺結節檢測 174
7.1 國內外研究現狀 174
7.2 總體框架 176
7.2.1 肺結節數據集 176
7.2.2 肺結節檢測難點 177
7.2.3 算法框架 177
7.3 肺結節可疑位置推薦算法 178
7.3.1 CT圖像的預處理 179
7.3.2 肺結節分割算法 180
7.3.3 優化方法 182
7.3.4 推斷方法 184
7.4 可疑肺結節定位算法 185
7.5 實驗結果與分析(1) 186
7.5.1 實驗結果 186
7.5.2 改進點效果分析 186
7.6 假陽性肺結節抑制算法 188
7.6.1 假陽性肺結節抑制網絡 188
7.6.2 優化策略 192
7.6.3 推斷策略 194
7.7 實驗結果與分析(2) 194
7.7.1 實驗結果 194
7.7.2 改進點效果分析 195
7.7.3 可疑位置推薦算法與假陽性抑制算法的整合 196
7.8 小結 197
參考資料 197
第8章 車道線檢測 199
8.1 國內外研究現狀 199
8.2 主要研究內容 201
8.2.1 總體解決方案 201
8.2.2 各階段概述 202
8.3 車道線檢測系統的設計與實現 205
8.3.1 車道線圖像數據標註與篩選 206
8.3.2 車道線圖片預處理 207
8.3.3 車道線分割模型訓練 211
8.3.4 車道線檢測 220
8.3.5 車道線檢測結果 224
8.4 車道線檢測系統性能測試 224
8.4.1 車道線檢測質量測試 224
8.4.2 車道線檢測時間測試 226
8.5 小結 226
參考資料 227
第9章 交通視頻分析 228
9.1 國內外研究現狀 229
9.2 主要研究內容 230
9.2.1 總體設計 231
9.2.2 精度和性能要求 231
9.3 交通視頻分析 232
9.3.1 車輛檢測和車牌檢測 232
9.3.2 車牌識別功能設計詳解 234
9.3.3 車輛品牌及顏色的識別 242
9.3.4 目標跟蹤設計詳解 243
9.4 系統測試 246
9.4.1 車輛檢測 247
9.4.2 車牌檢測 250
9.4.3 車牌識別 252
9.4.4 車輛品牌識別 255
9.4.5 目標跟蹤 257
9.5 小結 258
參考資料 258
第10章 道路坑洞檢測 260
10.1 系統流程 260
10.2 道路坑洞圖像生成 262
10.2.1 坑洞生成網絡 262
10.2.2 遮罩生成方法 263
10.2.3 圖像融合 264
10.2.4 基於增廣訓練集的目標檢測 265
10.3 實驗與分析 266
10.3.1 影響因素 267
10.3.2 數據增廣方法對比 268
10.3.3 邊緣提取方法對比 270
10.3.4 圖像融合方法對比 271
10.3.5 目標檢測 273
10.4 小結 274
參考資料 274
