AI 提示工程 — 基礎.應用.實例
萬欣,角誌浩,徐棟
- 出版商: 電子工業
- 出版日期: 2024-01-01
- 定價: $474
- 售價: 8.5 折 $403
- 語言: 簡體中文
- 頁數: 264
- ISBN: 7121470578
- ISBN-13: 9787121470578
-
相關分類:
Prompt Engineering
立即出貨
買這商品的人也買了...
-
$1,568Cognitive Virtual Assistants Using Google Dialogflow: Develop Complex Cognitive Bots Using the Google Dialogflow Platform -
IoT 沒那麼難!新手用 JavaScript 入門做自己的玩具!(iT邦幫忙鐵人賽系列書)$520$406 -
核心開發者親授!PyTorch 深度學習攻略 (Deep Learning with Pytorch)$1,000$790 -
資料科學的統計實務 : 探索資料本質、扎實解讀數據,才是機器學習成功建模的第一步$599$539 -
機器學習的統計基礎 : 深度學習背後的核心技術$680$537 -
$662Rhino 7 完全自學教程 -
$714OpenCV 輕松入門:面向 Python, 2/e -
$314ChatGPT 寫作超簡單 -
$556大規模語言模型:從理論到實踐 -
ChatGPT 開發手冊 Turbo × Vision 進化版 — 用 OpenAI Chat/Assistants API‧Function calling 設計 GPTs action‧LINE/Discord bot‧股市分析/自動助理$820$648 -
ReactJS 實踐入門$768$730 -
$331Python數據科學實戰 -
$607Chatbot 從0到1:對話式交互實踐指南, 2/e -
$356碼上行動:用 ChatGPT 學會 Python 編程巧用 ChatGPT 快速搞定 Python -
$356Python數據科學基礎 -
$266學會提問:AI大模型時代與ChatGPT對話的關鍵技能 -
$403Llama 大模型實踐指南 -
數據科學技術:文本分析和知識圖譜$774$735 -
$352向AI提問的藝術:提示工程入門與應用 學會提問讓AI特別想跟你聊下去 -
極速 ChatGPT 開發者兵器指南:跨界整合 Prompt Flow、LangChain 與 Semantic Kernel 框架$680$530 -
$311巧用 ChatGPT 輕鬆學演講 -
$359ChatGPT + AI 文案寫作實戰 108招 -
$356AI 幫你贏人人都能用的 AI 方法論 -
零基礎快速入門:利用 AI 輕鬆打造個人專屬自動化程式$690$545 -
Claude Code Vibe Coding 開發手冊$750$593
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
75折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$375 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
本書旨在探討AI提示工程(通常簡稱提示工程或Prompt工程)在各領域的應用。大語言模型是人工智能領域的重要成果,在自然語言處理和生成任務中發揮著重要的作用。讀者通過深入瞭解和應用提示工程,能充分挖掘和利用大語言模型的潛力,提升效率、促進創新,並解決實際問題。本書涵蓋人工智能發展歷程,提示工程的概念和設計原則、策略和技巧、不同領域的典型應用,以及數據分析與挖掘領域的應用。本書旨在以通俗易懂的方式呈現復雜概念和技術,並通過案例和實踐指導,幫助讀者掌握和應用提示工程,以取得更好的成果。本書適合從事AI提示工作的人員閱讀,也可以作為各類學校相關課程的教材,還可以作為提示工程培訓用書。
目錄大綱
目 錄
第1章 智領未來—走近大語言模型
1.1 人工智能的發展歷程
1.2 機器學習與深度學習
1.3 自然語言處理
1.3.1 大語言模型
1.3.2 機器翻譯與文本生成
1.4 大語言模型
1.4.1 Transformer與大語言模型
1.4.2 GPT及ChatGPT
1.5 小結
第2章 提示工程概述
2.1 提示工程的概念和作用
2.2 提示信息的設計原則和框架
2.2.1 清晰具體的提示
2.2.2 給模型思考的時間
2.2.3 提示信息的設計原則
2.2.4 提示框架
2.3 提示工程在人工智能生成內容(AIGC)中的應用
2.3.1 文本生成任務
2.3.2 圖像生成任務
2.3.3 音頻生成任務
2.3.4 其他生成任務
2.4 提示信息的評估
2.5 小結
第3章 提示工程的策略和技巧
3.1 提高提示信息量
3.1.1 零樣本提示(Zero-Shot Prompting)
3.1.2 單樣本提示(1-Shot Prompting)
3.1.3 少樣本提示(Few-Shot Prompting)
3.1.4 鏈式思維提示(Chain-of-Thought Prompting)
3.1.5 生成知識提示(Generated Knowledge Prompting)
3.2 提升一致性
3.2.1 自我一致性提示(Self-Consistency Prompting)
3.2.2 思維樹提示(Tree of Thought Prompting)
3.3 其他策略和技巧
3.3.1 結合其他能力
3.3.2 主動學習
3.3.3 強化反饋提示
3.4 反向提示工程(Reverse Prompt Engineering)
3.5 協作技巧
3.6 小結
第4章 提示工程的典型應用
4.1 職場效率手冊
4.1.1 求職招聘
4.1.2 高效辦公
4.1.3 職場溝通
4.2 大型創作:大語言模型輔助編寫一部書
4.2.1 擬定提綱
4.2.2 前言寫作
4.2.3 實驗開發
4.2.4 優化章節標題
4.2.5 每章小結
4.2.6 創建實訓
4.2.7 設置特別內容
4.2.8 處理內容中斷問題
4.2.9 調整生成的代碼
4.2.10 創建原創數據實驗
4.2.11 報錯處理、錯誤解析和自動糾錯
4.3 提示工程在知識領域的應用
4.3.1 自我修煉導師
4.3.2 助力文獻閱讀
4.3.3 研究問題發掘
4.3.4 多角色任務執行
4.4 小結
第5章 提示工程賦能數據分析與挖掘
5.1 數據收集的提示技巧
5.2 數據清洗技巧
5.3 數據探索技術
5.4 數據可視化技術
5.5 數據分析方法與模型
5.6 小結
第6章 提示工程數據分析實戰:零代碼、SQL和Python
6.1 案例:基於市場數據的產品分析與決策(零代碼)
6.2 案例:銷售數據分析與挖掘(SQL)
6.3 項目實戰:武漢房價分析(Python)
6.4 小結
結語
參考文獻
