LangChain 實戰:從原型到生產,動手打造 LLM 應用
張海立,曹士圯,郭祖龍
- 出版商: 電子工業
- 出版日期: 2024-04-01
- 定價: $534
- 售價: 7.9 折 $422
- 語言: 簡體中文
- 頁數: 268
- ISBN: 7121475456
- ISBN-13: 9787121475450
-
相關分類:
LangChain
-
相關翻譯:
LLM 串接所有服務 - LangChain 原型到產品全面開發 (繁中版)
銷售排行:
🥈 2024/6 簡體中文書 銷售排行 第 2 名
🥈 2024/5 簡體中文書 銷售排行 第 2 名
🥉 2024/4 簡體中文書 銷售排行 第 3 名
立即出貨
買這商品的人也買了...
-
深度學習 (Deep Learning)(繁體中文版)$1,200$1,020 -
$469多模態深度學習技術基礎 -
最強 AI 投資分析:打造自己的股市顧問機器人,股票趨勢分析×年報解讀×選股推薦×風險管理$750$593 -
$473YOLO 目標檢測 -
$469LangChain 入門指南:構建高可復用、可擴展的 LLM 應用程序 -
$505圖計算與推薦系統 -
$374Llama 大模型實踐指南 -
AI 時代 Math 元年 : 用 Python 全精通矩陣及線性代數$1,280$1,011 -
$327AI Agent:AI 的下一個風口 -
$564大語言模型:原理與工程實踐 -
新範式來臨 - 用 PyTorch 了解 LLM 開發微調 ChatGLM 全過程$980$774 -
AI 神助攻!程式設計新境界 – GitHub Copilot 開發 Python 如虎添翼 : 提示工程、問題分解、測試案例、除錯$560$442 -
$360LangChain 簡明講義:從0到1建構 LLM 應用程式 -
新一代 Keras 3.x 重磅回歸:跨 TensorFlow 與 PyTorch 建構 Transformer、CNN、RNN、LSTM 深度學習模型$750$593 -
$602Power BI 數據可視化指南:讓數據鮮活與可定製的視覺設計 (Charticulator篇) -
極速 ChatGPT 開發者兵器指南:跨界整合 Prompt Flow、LangChain 與 Semantic Kernel 框架$680$530 -
$331LangChain 編程:從入門到實踐 -
$531大語言模型應用指南:以 ChatGPT 為起點,從入門到精通的 AI 實踐教程 (全彩) -
LLM 的瑞士刀 - 用 LangChain 極速開發可擴充大型應用程式$880$695 -
LangChain 開發手冊 -- OpenAI × LCEL 表達式 × Agent 自動化流程 × RAG 擴展模型知識 × 圖形資料庫 × LangSmith 除錯工具$680$537 -
$559LangChain 技術解密:構建大模型應用的全景指南 -
$426大模型應用開發 : 動手做 AI Agent -
Stable Diffusion:與杰克艾米立攜手專精 AI 繪圖$750$593 -
LLM 大型語言模型的絕世祕笈:27路獨步劍法,帶你闖蕩生成式 AI 的五湖四海 (iThome鐵人賽系列書)$650$507 -
LLM 串接所有服務 - LangChain 原型到產品全面開發$680$537
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$576 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
本書是專為初學者和對LangChain應用及大語言模型(LLM)應用感興趣的開發者而編寫的。本書以LangChain團隊於2024年1月發布的長期維護版本0.1為基礎,重點介紹了多個核心應用場景,並且深入探討了LCEL的應用方式。同時,本書圍繞LangChain生態系統的概念,詳細探討LangChain、LangServe和LangSmith,幫助讀者全面瞭解LangChain團隊在生成式人工智能領域的佈局。此外,本書還介紹了開源模型運行工具,為讀者引入本地免費的實驗環境,讓讀者能夠親自動手進行實際操作。 通過本書,讀者可以真正體驗到LangChain在從原型到生產的LLM應用開發和上線閉環體驗方面的優勢,全面瞭解LangChain的概念、原理和應用,並且獲得實際開發LangChain應用的經驗。本書示例豐富,內容通俗易懂,既可作入門教程,也可供相關技術人員參考。
目錄大綱
第1章 LangChain生態系統概覽 1
1.1 LangChain生態系統的佈局 2
1.1.1 LangChain軟件包的組織方式 4
1.1.2 LangChain核心功能模塊概覽 5
1.2 從Chat LangChain應用看生態實踐 10
1.2.1 讀取和加載私域數據 11
1.2.2 數據預處理及存儲 13
1.2.3 基於用戶問題的數據檢索 14
1.2.4 基於檢索內容的應答生成 14
1.2.5 提供附帶中間結果的流式輸出 16
1.2.6 推理鏈的服務化和應用化 17
1.2.7 追逐生產環境的調研鏈和指標 18
第2章 環境準備 21
2.1 在VS Code中開啟並使用Jupyter Notebook 23
2.2 通過python-dotenv隱式加載環境變量 24
2.3 使用Ollama加載大語言模型 25
第3章 角色扮演寫作實戰 28
3.1 場景代碼示例 29
3.2 場景代碼解析 30
3.3 Model I/O三元組 31
3.3.1 Prompt模塊 31
3.3.2 Model模塊 35
3.3.3 Output Parser模塊 36
3.4 LCEL語法解析:基礎語法和接口 40
3.4.1 Runnable對象的標準接口 40
3.4.2 Runnable對象的輸入和輸出 41
3.4.3 Runnable對象的動態參數綁定 41
3.4.4 審查鏈路結構和提示詞 43
3.5 Runnable Sequence的基座:Model I/O三元組對象 44
第4章 多媒體資源的摘要實戰 46
4.1 場景代碼示例 47
4.2 場景代碼解析 50
4.3 Document的加載與處理 51
4.3.1 文檔加載器 51
4.3.2 文檔轉換器 51
4.3.3 文本分割器 52
4.4 3種核心文檔處理策略 56
4.4.1 Stuff策略:直接合並 56
4.4.2 MapReduce策略:分而治之 58
4.4.3 Refine策略:循序疊代 61
4.5 LCEL語法解析:RunnableLambda和RunnableMap 65
4.5.1 RunnableLambda 65
4.5.2 RunnableMap 68
第5章 面向文檔的對話機器人實戰 70
5.1 場景代碼示例 71
5.2 場景代碼解析 74
5.3 RAG簡介 75
5.3.1 什麼是RAG 75
5.3.2 RAG的工作原理 77
5.4 LangChain中的RAG實現 78
5.5 Retriever模塊的實用算法概覽 80
5.5.1 檢索器融合 82
5.5.2 上下文壓縮 83
5.5.3 自組織查詢 85
5.5.4 時間戳權重 97
5.5.5 父文檔回溯 99
5.5.6 多維度回溯 103
5.5.7 多角度查詢 110
5.6 Indexing API簡介 113
5.6.1 刪除模式 114
5.6.2 使用場景和方式 115
5.7 Chain模塊和Memory模塊 119
5.7.1 通過Retrieval QA Chain實現文檔問答 120
5.7.2 通過Conversational Retrieval QA Chain實現會話文檔問答 121
5.7.3 通過Memory模塊為對話過程保駕護航 122
5.8 長上下文記憶系統的構建 124
5.8.1 會話記憶系統 125
5.8.2 語義記憶系統 125
5.8.3 生成式Agent系統 126
5.8.4 長上下文記憶系統的構建要點 126
5.9 LCEL語法解析:RunnablePassthrough 128
5.10 Runnable Sequence的數據連接:Retriever對象 130
第6章 自然語言交流的搜索引擎實戰 134
6.1 場景代碼示例 136
6.2 場景代碼解析 137
6.3 Agent簡介 138
6.3.1 Agent和Chain的區別 139
6.3.2 Agent的思考鏈 140
6.4 Agent的工具箱 145
6.5 面向OpenAI的Agent實現 148
6.6 Callback回調系統簡介 153
6.7 Callback和verbose的關系 158
6.8 LCEL語法解析:RunnableBranch和鏈路異常回退機制 159
6.8.1 RunnableBranch 159
6.8.2 鏈路異常回退機制 162
6.9 Runnable Sequence的擴展:外部工具的接入 164
6.10 LangGraph:以圖的方式構建Agent 165
第7章 快速構建交互式LangChain應用原型 170
7.1 Streamlit及免費雲服務“全家桶” 172
7.1.1 環境準備 172
7.1.2 極簡開發 172
7.1.3 實時交互 174
7.1.4 雲上部署 177
7.2 使用Chainlit快速構建交互式文檔對話機器人 179
7.2.1 環境準備 179
7.2.2 簡單示例 180
7.2.3 交互式文檔對話機器人 184
第8章 使用生態工具加速LangChain應用開發 195
8.1 LangSmith:全面監控LangChain應用 197
8.1.1 追蹤LangChain應用 199
8.1.2 數據集與評估 202
8.1.3 LangChain Hub 204
8.2 LangServe:將LangChain應用部署至Web API 207
8.2.1 快速開始 208
8.2.2 原理詳解 211
8.3 Templates & CLI:從模板和腳手架快速啟動 214
8.3.1 LangChain Templates 214
8.3.2 LangChain CLI命令行工具 215
8.3.3 優化升級 218
第9章 我們的“大世界” 219
9.1 大語言模型應用開發框架的“你我他” 220
9.1.1 三大框架的簡介 221
9.1.2 三大框架的特性 222
9.1.3 三大框架的對比 223
9.2 從LangChain Hub看提示詞的豐富應用場景 224
9.2.1 場景寫作 225
9.2.2 信息總結 228
9.2.3 信息提取 230
9.2.4 代碼分析和評審 232
9.2.5 提示優化 234
9.2.6 RAG 235
9.2.7 自然語言SQL查詢 236
9.2.8 評價打分 237
9.2.9 合成數據生成 238
9.2.10 思考鏈 240
9.3 淺談通用人工智能的認知架構的發展 242
