金融數據分析和數據挖掘案例實戰

魏建國,曾珂,翟錕,常國珍

  • 出版商: 電子工業
  • 出版日期: 2025-06-01
  • 售價: $594
  • 語言: 簡體中文
  • 頁數: 324
  • ISBN: 712150278X
  • ISBN-13: 9787121502781
  • 相關分類: Data Science
  • 下單後立即進貨 (約4週~6週)

商品描述

《金融數據分析和數據挖掘案例實戰》是一本聚焦金融數據處理與挖掘的專業圖書。它以客戶畫像為核心,涵蓋原理、技術、管理等篇章,詳述數據挖掘方法論及信貸各環節模型構建,如申請、行為、催收評分卡等。本書通過大量的案例展示如何運用數據解決實際問題,從數據理解、預處理,到模型構建、評估與應用,還涉及算法工程化內容,助力金融從業者及相關專業人士提升數據分析能力,挖掘數據價值,推動金融業務創新與決策優化。

目錄大綱

第 1 篇 原理篇
第 1 章 數據科學思維..............................................................2
1.1 數據科學的工作範式 ........................................................................................2
1.2 數據分析方法和流程 ........................................................................................4
1.2.1 發現問題 ...............................................................................................................6
1.2.2 近因分析 ...............................................................................................................8
1.2.3 根因分析 ...............................................................................................................9
1.2.4 做出預測 .............................................................................................................10
1.2.5 制定方案 .............................................................................................................12
1.2.6 驗證方案 .............................................................................................................14
1.3 數據挖掘方法論 ..............................................................................................15
1.3.1 CRISP-DM 方法論 .............................................................................................15
1.3.2 SEMMA 方法論 .................................................................................................16
1.4 金融行業數據挖掘場景 ..................................................................................18
第 2 篇 技術篇
第 2 章 某銀行貸款產品精準營銷模型........................................24
2.1 數據介紹 ..........................................................................................................24
2.2 商業分析 ..........................................................................................................29
2.2.1 發現問題 .............................................................................................................29
2.2.2 診斷問題 .............................................................................................................30
2.2.3 明確目標 .............................................................................................................31
2.2.4 定性分析 .............................................................................................................31
2.3 數據理解 ..........................................................................................................35
2.3.1 建立特征體系 .....................................................................................................35
2.4 數據準備 ..........................................................................................................39
2.4.1 提取被解釋變量 .................................................................................................39
2.4.2 提取靜態特征和時點特征 .................................................................................40
2.4.3 提取時期特征 .....................................................................................................40
2.4.4 提取預測用數據寬表 .........................................................................................41
2.5 建模和評估 ......................................................................................................42
2.5.1 定量客戶畫像與數據清洗 .................................................................................42
2.5.2 建立邏輯回歸模型 .............................................................................................45
2.5.3 評估模型 .............................................................................................................47
2.6 模型運用的準備工作 ......................................................................................48
2.7 流程回顧 ..........................................................................................................49
第3章 多維特征的客戶細分...................................................51
3.1 客戶細分 ..........................................................................................................51
3.1.1 客戶細分定義 .....................................................................................................51
3.1.2 客戶細分類型 .....................................................................................................51
3.1.3 案例:銀行多維度客戶畫像 .............................................................................54
3.2 預處理 ..............................................................................................................57
3.2.1 填補缺失值 .........................................................................................................57
3.2.2 修訂錯誤值 .........................................................................................................58
3.2.3 處理離散變量 .....................................................................................................58
3.2.4 正態化與標準化 .................................................................................................61
3.3 維度分析 ..........................................................................................................64
3.4 聚類 ..................................................................................................................72
3.5 簇特征的解釋 ..................................................................................................75
第4章 信用風險預測模型......................................................81
4.1 信貸全生命周期風險管理 ..............................................................................81
4.1.1 貸前階段 .............................................................................................................81
4.1.2 貸中階段 .............................................................................................................83
4.1.3 貸後階段 .............................................................................................................84

4.2 ABC卡簡介 .....................................................................................................86
4.2.1 信用評分卡簡介 .................................................................................................86
4.2.2 ABC卡的應用 ...................................................................................................87
第5章 貸前信用風險預測模型(A卡).....................................90
5.1 智能信貸審批基本框架 ..................................................................................90
5.1.1 申請人識別 .........................................................................................................91
5.1.2 信貸準入 .............................................................................................................92
5.1.3 申請評分卡 .........................................................................................................97
5.1.4 全樣本建模與抽樣建模 ...................................................................................106
5.2 特征工程 ........................................................................................................107
5.2.1 數據來源 ...........................................................................................................107
5.2.2 數據加工 ...........................................................................................................109
5.3 模型構建與評估 ............................................................................................121
5.3.1 Logistic回歸模型.............................................................................................121
5.3.2 評分刻度與分值分配 .......................................................................................123
5.3.3 模型評估 ...........................................................................................................125
5.4 模型監控 ........................................................................................................129
5.4.1 前端監控 ...........................................................................................................129
5.4.2 後端監控 ...........................................................................................................134
5.5 拒絕推斷 ........................................................................................................138
5.5.1 外部數據推斷 ...................................................................................................138
5.5.2 模型推斷 ...........................................................................................................139
5.5.3 拒絕推斷結果的驗證 .......................................................................................142
5.6 案例 1:某消費金融公司申請評分卡構建 .................................................143
5.6.1 場景介紹 ...........................................................................................................143
5.6.2 數據清洗 ...........................................................................................................143
5.6.3 特征初篩 ...........................................................................................................148
5.6.4 分箱與 WoE 編碼 .............................................................................................149
5.6.5 相關性分析與特征聚類 ...................................................................................151
5.6.6 逐步回歸 ...........................................................................................................151
5.6.7 模型評估 ...........................................................................................................153
5.6.8 評分卡的制作 ...................................................................................................155
5.6.9 模型文檔 ...........................................................................................................158
5.7 案例 2:制作 Vintage 報告 ...........................................................................159
5.7.1 Vintage 相關業務報表 .....................................................................................159
5.7.2 Vintage 報告的制作 .........................................................................................160
5.8 申請評分卡應用 ............................................................................................166
5.8.1 模型及決策流 ...................................................................................................166
5.8.2 風險策略 ...........................................................................................................167
5.8.3 額度策略 ...........................................................................................................169
第6章 貸中信用風險預測模型(B卡)...................................171
6.1 行為評分卡 ....................................................................................................171
6.1.1 業務理解 ...........................................................................................................171
6.1.2 數據理解 ...........................................................................................................172
6.1.3 特征工程 ...........................................................................................................173
6.1.4 模型構建與評估 ...............................................................................................17
46.2 案例:某信用卡業務行為評分卡構建 ........................................................174
6.2.1 場景介紹 ...........................................................................................................174
6.2.2 數據整理與特征工程 .......................................................................................175
6.2.3 數據清洗與特征初篩 .......................................................................................185
6.2.4 分箱與 WoE 編碼 .............................................................................................187
6.2.5 相關性篩選 .......................................................................................................187
6.2.6 逐步回歸建模 ...................................................................................................187
6.2.7 模型評估 ...........................................................................................................188
6.3 行為評分卡的應用 ........................................................................................190
6.3.1 額度管理 ...........................................................................................................190
6.3.2 續卡或續貸策略 ...............................................................................................191
6.3.3 客戶留存分析和挽留 .......................................................................................191
6.3.4 風險監控 ...........................................................................................................192
第7章 貸後催收模型(C卡)..............................................193
7.1 催收評分卡 ....................................................................................................193
7.1.1 業務理解 ...........................................................................................................193
7.1.2 數據理解 ...........................................................................................................195
7.1.3 特征工程與模型構建 .......................................................................................196
7.2 催收評分卡的應用 ........................................................................................197
7.2.1 預催收階段 .......................................................................................................198
7.2.2 早期催收階段 ...................................................................................................199
第8章 申請反欺詐模型.......................................................200
8.1 業務理解 ........................................................................................................200
8.1.1 申請欺詐產生的背景 .......................................................................................200
8.1.2 申請欺詐的分類 ...............................................................................................201
8.1.3 申請欺詐的應對 ...............................................................................................203
8.2 案例:申請反欺詐模型 ................................................................................205
8.2.1 異常特征構造 ...................................................................................................207
8.2.2 網絡特征提取 ...................................................................................................214
8.2.3 構建識別模型 ...................................................................................................235
第9章 算法工程化.............................................................248
9.1 構建合理的項目結構 ....................................................................................248
9.1.1 為什麼要構建合理的項目結構 .......................................................................248
9.1.2 什麼是一個數據科學項目應有的項目結構 ...................................................250
9.2 如何編寫規範的數據工程代碼 ....................................................................254
9.2.1 代碼可讀性 .......................................................................................................254
9.2.2 數據處理性能 ...................................................................................................259