簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
85折
$245生成式視覺模型原理與實踐 -
87折
$459AI大模型:賦能通信產業 -
85折
$347科學預測——預見科學之美 -
85折
$254Processing創意編程入門:從編程原理到項目案例 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
79折
$469GitHub Copilot 編程指南 -
VIP 95折
C#核心編程200例(視頻課程+全套源程序)$648$616 -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673 -
VIP 95折
深入淺出 Docker, 2/e$419$398 -
VIP 95折
Unity 特效制作:Shader Graph 案例精講$774$735 -
79折
$275零基礎玩轉國產大模型DeepSeek -
VIP 95折
人工智能大模型:機器學習基礎$774$735 -
VIP 95折
RAG 極簡入門:原理與實踐$419$398 -
VIP 95折
大模型實戰 : 從零實現 RAG 與 Agent 系統$419$398 -
85折
$296算法趣學(第2版) -
85折
$301大模型理論與實踐——打造行業智能助手 -
VIP 95折
生成式人工智能 (基於 PyTorch 實現)$599$569 -
VIP 95折
Java 學習筆記, 6/e$839$797 -
85折
$407ZBrush遊戲角色設計(第2版) -
85折
$454軟件架構決策之道:軟件架構決策的原則和方法 -
79折
$374DeepSeek + Dify + Ollama 全棧 AI 開發實戰 (前端本地部署到大模型集成訓練) -
85折
$505從程式設計師到架構師:大數據技術金融級全場景應用實戰
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
85折
$245生成式視覺模型原理與實踐 -
87折
$459AI大模型:賦能通信產業 -
85折
$347科學預測——預見科學之美 -
85折
$254Processing創意編程入門:從編程原理到項目案例 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
79折
$469GitHub Copilot 編程指南 -
VIP 95折
C#核心編程200例(視頻課程+全套源程序)$648$616 -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673 -
VIP 95折
深入淺出 Docker, 2/e$419$398 -
VIP 95折
Unity 特效制作:Shader Graph 案例精講$774$735 -
79折
$275零基礎玩轉國產大模型DeepSeek -
VIP 95折
人工智能大模型:機器學習基礎$774$735 -
VIP 95折
RAG 極簡入門:原理與實踐$419$398 -
VIP 95折
大模型實戰 : 從零實現 RAG 與 Agent 系統$419$398 -
85折
$296算法趣學(第2版) -
85折
$301大模型理論與實踐——打造行業智能助手 -
VIP 95折
生成式人工智能 (基於 PyTorch 實現)$599$569 -
VIP 95折
Java 學習筆記, 6/e$839$797 -
85折
$407ZBrush遊戲角色設計(第2版) -
85折
$454軟件架構決策之道:軟件架構決策的原則和方法 -
79折
$374DeepSeek + Dify + Ollama 全棧 AI 開發實戰 (前端本地部署到大模型集成訓練) -
85折
$505從程式設計師到架構師:大數據技術金融級全場景應用實戰
相關主題
商品描述
本書主要講解數據分析與大數據處理所需的技術、基礎設施、核心概念、實施流程。
從編程語言準備、數據採集與清洗、數據分析與可視化,到大型數據的分佈式存儲與分佈式計算,
貫穿了整個大數據項目開發流程。本書輕理論、重實踐,目的是讓讀者快速上手。
第1篇首先介紹了Python的基本語法、面向對象開發、模塊化設計等,掌握Python的編程方式。
第2篇介紹了網絡數據採集、數據清洗、數據存儲等技術。第3篇介紹了Python常用的數據分析工具,
擴展了更多的數據清洗、插值方法,為最終的數據可視化奠定基礎。第4篇是大數據分析的重點。
首先介紹了Hadoop的框架原理、調度原理,MapReduce原理與編程模型、環境搭建,
接著介紹了Spark框架原理、環境搭建方式,以及如何與Hive等第三方工具進行交互,
還介紹了最新的結構化流式處理技術。
第5篇通過三個項目實例,綜合介紹瞭如何分析網頁、如何搭建分佈式爬蟲、
如何應對常見的反爬蟲、如何設計數據模型、如何設計架構模型、如何在實踐中綜合運用前四篇涉及的技術。
本書既適合非計算機專業的編程“小白”,適合剛畢業或即將畢業走向工作崗位的廣大畢業生,
以及已經有編程經驗,但想轉行做大數據分析的專業人士。同時,還可以作為廣大職業院校、
電腦培訓班的教學參考用書。
