TensorFlow 2.0 深度學習從零開始學
王曉華
- 出版商: 清華大學
- 出版日期: 2020-06-01
- 定價: $414
- 售價: 7.9 折 $327
- 語言: 簡體中文
- 頁數: 233
- 裝訂: 平裝
- ISBN: 7302552738
- ISBN-13: 9787302552734
-
相關分類:
TensorFlow
立即出貨
買這商品的人也買了...
-
類神經網路與模糊控制理論入門與應用$350$315 -
Raspberry Pi 機器人自造專案$450$383 -
機器學習$648$616 -
Raspberry Pi 超炫專案與完全實戰, 2/e$580$458 -
$474深入理解機器學習:從原理到算法 (Understanding Machine Learning : From Theory to Algorithms) -
$280神經網絡與深度學習 -
$474深度學習 : Caffe 之經典模型詳解與實戰 -
Unity 3D 遊戲設計實戰, 2/e (適用Unity 5.X)$620$490 -
$245深度學習:原理與應用實踐 -
深度學習快速入門 — 使用 TensorFlow (Getting started with TensorFlow)
$360$281 -
職業駭客的修練 ─ 指標實務篇 : 從門外漢到職業駭客的最短路程,收錄作者心得$490$382 -
TensorFlow + Keras 深度學習人工智慧實務應用$590$460 -
Deep learning 深度學習必讀 - Keras 大神帶你用 Python 實作 (Deep Learning with Python)$1,000$790 -
$403終身機器學習 (原書第2版) -
$454TensorFlow從零開始學 -
人人可懂的量子計算$354$336 -
$352Python 聊天機器人開發:基於自然語言處理與機器學習 (Building Chatbots with Python: Using Natural Language Processing and Machine Learning) -
$354零基礎入門 Python 深度學習 -
$301大話量子通信 -
$422TensorFlow深度學習及實踐 -
Towards Tensorflow 2.0:無痛打造AI模型(iT邦幫忙鐵人賽系列書)$500$390 -
$354Python 元學習 : 通用人工智能的實現 (Hands-On Meta Learning with Python: Meta learning using one-shot learning, MAML, Reptile, and Meta-SGD with TensorFlow) -
$374深度學習進階:捲積神經網絡和對象檢測 -
Python 機器學習超進化:AI影像辨識跨界應用實戰 (附100分鐘影像處理入門影音教學/範例程式)$450$356 -
$327深度學習TensorFlow編程實戰
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$576 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
隨著人工智能的發展以及TensorFlow在人工智能方面的火熱應用,
越來越多的大學逐步開設深度學習和人工智能課程。
《TensorFlow 2.0深度學習從零開始學》既是一本為讀者量身定製的TensorFlow 2.0入門教材,
也是針對需要學習TensorFlow 2.0新內容的讀者提供的基礎與進階知識的深入型教材。
該書分為10章,主要內容包括TensorFlow 2.0開發環境、TensorFlow 2.0新特性、
TensorFlow與Keras的使用、TensorFlow 2.0語法基礎、
捲積層詳解與MNIST實戰、Dataset使用詳解、TensorFlow Datasets和TensorBoard詳解、
ResNet及其實戰、註意力機制、捲積神經網絡實戰。
該書內容詳盡、示例豐富,是廣大對TensorFlow 2.0感興趣的讀者必備的參考書,
同時也非常適合大中專院校師生學習閱讀,還可作為高等院校計算機及相關專業的教材使用。
作者簡介
王曉華
計算機專業講師,長期講授面向對象程序設計、
數據結構、Hadoop程序設計等研究生和本科生相關課程;
主研方向為雲計算、數據挖掘;曾主持和參與多項國家和省級科研課題,
獨立科研項目獲省級成果認定,發表過多篇論文,
擁有一項專利;著有《Spark MLlib機器學習實踐》
《TensorFlow深度學習應用實踐》《OpenCV+TensorFlow深度學習與計算機視覺實戰》等圖書。
目錄大綱
第1章TensorFlow 2.0的安裝
1.1 Python基本安裝和用法
1.1.1 Anaconda的下載與安裝
1.1.2 Python編譯器PyCharm的安裝
1.1.3使用Python計算softmax函數
1. 2 TensorFlow 2.0 GPU版本的安裝
1.2.1檢測Anaconda中的TensorFlow版本
1.2.2 TensorFlow 2.0 GPU版本基礎顯卡推薦和前置軟件安裝
1.3 Hello TensorFlow 2.
1.4本章小結
第2章TensorFlow 2.0令人期待的變化
2.1新的架構、新的運行、新的開始
2.1.1 API精簡
2.1.2 Eager Execution
2.1.3取消全局變量
2.1.4使用函數而不是會話
2.1.5棄用collection
2.2配角轉成主角:從TensorFlow Eager Execution轉正談起
2.2.1 Eager簡介與調用
2.2.2讀取數據
2.3使用TensorFlow 2.0模式進行線性回歸的一個簡單例子
2.3.1模型的工具與數據的生成
2.3.2模型的定義
2.3.3損失函數的定義
2. 3.4梯度函數的更新計算
2.4 TensorFlow 2.0進階-AutoGraph和t£缸lcdon
2.5本章小結
第3章TensorFlow和Keras
3.1模型!模型!模型!還是模型
3.2使用Keras API實現鳶尾花分類的例子(順序模式)
3.2.1數據的準備
3.2.2數據的處理
3.2.3梯度更新函數的寫法
3.2.4使用Keras函數式編程實現鳶尾花分類的例子(重點)
3.2.5使用保存的Keras模式對模型進行複用
3.2.6使用TensorFlow 2.0標準化編譯對iris模型進行擬合
3.3多輸入單一輸出TensorFlow 2.0編譯方法(選學)
3.3.1數據的獲取與處理
3.3.2模型的建立
3.3.3數據的組合
3.4多輸入多輸出TensorFlow 2.0編譯方法(選學)
3.5全連接層詳解
3.5.1全連接層的定義與實現
3.5.2使用TensorFlow 2.0自帶的API實現全連接層
3.5.3打印顯示TensorFlow 2.0設計的模型結構和參數
3.6本章小結
第4章TensorFlow 2.0語法基礎
4.1 BP神經網絡簡介
4.2 BP神經網絡的兩個基礎算法
4.2.1最小二乘法(LS算法)
4.2.2道士下山的故事——梯度下降算法
4.3反饋神經網絡反向傳播算法
4.3.1深度學習基礎
4.3.2鍊式求導法則
4.3.3反饋神經網絡原理與公式推導
4.3.4反饋神經網絡原理的激活函數
4.3.5反饋神經網絡原理的Python實現
4.4本章小結
第5章捲積層與MNIST實戰
5.1捲積運算
5. 1.1捲積運算的基本概念
5.1.2 TensorFlow2.0中捲積函數的實現
5.1.3池化運算
5.1.4 softmax激活函數
5.1.5捲積神經網絡原理
5 .2 TensorFlow2.0編程實戰:MNIST手寫體識別
5.2.1 MNIST數據集
5.2.2 MNIST數據集特徵和標註
5.2.3 TensorFlow2.0編程實戰:MNIST數據集
5.2.4使用自定義的捲積層實現MNIST識別
5.3本章小結
……
第6章TensorFlow 2.0 Dataset使用詳解
第7章TensorFlow Datasets和TensorBoard詳解
第8章從冠軍開始:ResNet
第9章註意力機制
第10章捲積神經網絡實戰:識文斷字也可以



