認知計算攻略 : 使用 Cognitive Services 和 TensorFlow
[巴基斯坦]阿德南·馬蘇德(Adnan Masood) 阿德南·拉希米(Adnan Hashmi)著 蒲成 譯
- 出版商: 清華大學
- 出版日期: 2020-08-01
- 定價: $588
- 售價: 7.9 折 $465
- 語言: 簡體中文
- ISBN: 7302554358
- ISBN-13: 9787302554356
-
相關分類:
DeepLearning、TensorFlow、Natural Language Processing
- 此書翻譯自: Cognitive Computing Recipes: Artificial Intelligence Solutions Using Microsoft Cognitive Services and TensorFlow
立即出貨
買這商品的人也買了...
-
$352Python 演算法教學手冊 -
$393白話統計 -
$232圖解算法——使用Python -
$331基於 Python 的大數據分析基礎及實戰 -
$301Python 自動化運維快速入門 -
$479Python 在機器學習中的應用 -
$422商戰數據挖掘 你需要瞭解的數據科學與分析思維 (Data science for business) -
$458Python 程序員面試寶典劍指 offer -
新手村逃脫!初心者的 Python 機器學習攻略(iT邦幫忙鐵人賽系列書)$500$390 -
$422算法第一步(Python版) -
精實AI|新創企業如何運用人工智慧獲得成長 (Lean AI)$450$356 -
初探機器學習-從認識 AI 到 Kaggle競賽 (學AI真簡單系列1)$280$252 -
必學!Python 資料科學‧機器學習最強套件 - NumPy、Pandas、Matplotlib、OpenCV、scikit-learn、tf.Keras$680$537 -
$352軟件架構設計 : 程序員向架構師轉型必備, 2/e -
$454SaaS 商業實戰:好模式如何變成好生意 -
架構師的自我修煉:技術、架構和未來$534$507 -
$305機器學習入門與實戰 — 基於 scikit-learn 和 Keras -
第一次用 Azure 雲端服務就上手$620$490 -
黑帽 Python|給駭客與滲透測試者的 Python 開發指南, 2/e (Black Hat Python : Python Programming for Hackers and Pentesters, 2/e)$450$356 -
Spring REST API 開發與測試指南|使用 Swagger、HATEOAS、JUnit、Mockito、PowerMock、Spring Test$580$493 -
ACCELERATE:精益軟體與 DevOps 背後的科學 (Accelerate: The Science of Lean Software and DevOps: Building and Scaling High Performing Technology Organizations)$499$424 -
銷售 AI 化!看資料科學家如何思考, 用 Python 打造能賺錢的機器學習模型$620$527 -
$331集成學習入門與實戰:原理、算法與應用 -
Linux 網路內功修煉 - 徹底了解底層原理及高性能架構$780$616 -
演算法生存指南$800$632
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$576 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
讀者將: ● 使用Microsoft Cognitive Services API構建可用於生產環境的解決方案 ● 解決自然語言處理和電腦視覺中的企業問題 ● 探究機器學習開發生命周期——從正式的問題定義到規模化部署
目錄大綱
目 錄
第1章 使用認知服務實現AI民主化 1
1.1 AI民主化 3
1.1.1 機器學習庫 4
1.1.2 機器學習和深度學習目前的狀態 5
1.2 為人工智能構建業務用例 6
1.2.1 自然語言理解和生成 7
1.2.2 語音識別 7
1.2.3 認知數字助理 7
1.2.4 非結構化文本分析 8
1.2.5 決策管理 8
1.2.6 機器人流程自動化 8
1.3 機器學習的五大流派 8
1.4 Microsoft認知服務——概述 9
1.4.1 語音 11
1.4.2 語言 11
1.4.3 知識 11
1.4.4 搜索 11
1.5 人工智能的倫理規範 12
1.6 結語 13
第2章 構建對話式接口 15
2.1 對話式UI的組成部分 15
2.2 開始使用機器人框架 16
2.3 Bot Framework SDK示例 19
2.4 攻略2-1:構建YodaBot 21
2.4.1 問題 21
2.4.2 解決方案 21
2.4.3 運行機制 24
2.5 攻略2-2:使用Azure Bot Service創建機器人 29
2.5.1 問題 29
2.5.2 解決方案 29
2.5.3 運行機制 30
2.6 攻略2-3:構建一個問答機器人 35
2.6.1 問題 35
2.6.2 解決方案 35
2.6.3 運行機制 35
2.7 攻略2-4:數據中心健康監測機器人 42
2.7.1 問題 42
2.7.2 解決方案 43
2.7.3 運行機制 43
2.8 通過Resource Manager模板設置Azure部署 63
第3章 眼見為實:自定義視覺 69
3.1 熱狗,非熱狗 71
3.1.1 問題 71
3.1.2 解決方案 71
3.2 構建自定義視覺以訓練安防系統 77
3.2.1 問題 78
3.2.2 解決方案 78
3.3 使用認知服務電腦視覺API構建說明標註機器人 87
3.3.1 問題 87
3.3.2 解決方案 87
3.3.3 DAQUAR挑戰 101
3.4 使用CustomVision.AI研究冰箱 101
3.4.1 問題 101
3.4.2 解決方案 101
3.5 現在使用認知工具集研究冰箱 109
3.5.1 問題 109
3.5.2 解決方案 109
3.6 使用自定義視覺進行產品和部件識別 122
3.6.1 問題 122
3.6.2 解決方案 122
3.7 在CNTK中使用自定義視覺模型搜索服飾 141
3.7.1 問題 141
3.7.2 解決方案 141
第4章 文本分析:暗數據前沿 155
4.1 文本分析生態系統概覽 156
4.1.1 CoreNLP 156
4.1.2 NLTK——Python自然語言工具集 157
4.1.3 SpaCY 157
4.1.4 Gensim 158
4.1.5 Word2Vec 158
4.1.6 GloVe——詞表示的全局向量 159
4.1.7 DeepDive——功能,而非算法 159
4.1.8 Snorkel——用於快速訓練數據創建的系統 159
4.1.9 Fonduer——來自富格式化數據的知識庫構造 160
4.1.10 TextBlob——簡化文本處理 160
4.1.11 基於雲端的文本分析和API 160
4.2 索賠分類 161
4.2.1 問題 161
4.2.2 解決方案 161
4.2.3 運行機制 162
4.3 獲悉公司的健康狀況 169
4.3.1 問題 169
4.3.2 解決方案 169
4.3.3 運行機制 170
4.4 文本自動摘要 175
4.4.1 問題 175
4.4.2 解決方案 175
4.4.3 運行機制 181
第5章 認知機器人技術處理自動化:自動執行 183
5.1 從音頻中提取意圖 185
5.1.1 問題 185
5.1.2 解決方案 185
5.1.3 運行機制 186
5.1.4 創建一個LUIS端點 186
5.1.5 創建LUIS應用並且針對用戶話語進行訓練 188
5.1.6 在Visual Studio 2017中編寫控制臺應用的代碼 195
5.2 用於自動化技術支持工單生成的電子郵件分類和分發 203
5.2.1 問題 203
5.2.2 解決方案 203
5.2.3 運行機制 204
5.3 異常檢測:欺詐性信用卡交易案例 215
5.3.1 問題 215
5.3.2 解決方案 215
5.3.3 運行機制 215
5.4 大海撈針:時序中的交叉相關性 220
5.4.1 問題 220
5.4.2 解決方案 220
5.4.3 運行機制 220
5.5 理解交易模式:對於能源的需求預測 226
5.5.1 問題 226
5.5.2 解決方案 226
5.5.3 運行機制 227
第6章 知識管理和智能搜索 233
6.1 探究Azure Search索引處理 236
6.1.1 問題 236
6.1.2 解決方案 236
6.1.3 運行機制 238
6.2 使用LUIS進行自然語言搜索 239
6.2.1 問題 239
6.2.2 解決方案 239
6.2.3 運行機制 240
6.3 實現實體搜索 264
6.3.1 問題 264
6.3.2 解決方案 264
6.3.3 運行機制 265
6.4 獲取論文摘要 268
6.4.1 問題 268
6.4.2 解決方案 268
6.4.3 運行機制 269
6.5 在文本分析中識別連接實體 273
6.5.1 問題 273
6.5.2 解決方案 273
6.5.3 運行機制 273
6.6 應用認知型搜索 275
6.6.1 問題 275
6.6.2 解決方案 275
6.6.3 創建一個存儲 277
6.6.4 上傳數據集 278
第7章 AIOps:運維中的預測分析與機器學習 285
7.1 使用Grakn構建知識圖譜 286
7.1.1 問題 286
7.1.2 解決方案 287
7.1.3 運行機制 287
7.2 使用Cognitive Services Labs Project Anomaly Finder檢測異常 296
7.2.1 問題 296
7.2.2 解決方案 297
7.2.3 運行機制 297
第8章 行業中的AI用例 305
8.1 金融服務 305
8.2 手機詐騙檢測 305
8.2.1 問題 305
8.2.2 解決方案 305
8.3 在途資金優化 306
8.3.1 問題 306
8.3.2 解決方案 307
8.4 事故傾向性預測(保險) 307
8.4.1 問題 307
8.4.2 解決方案 307
8.5 醫療健康 307
8.6 精確診斷和病患治療結果預測 309
8.6.1 問題 309
8.6.2 解決方案 309
8.7 醫院再入院預測和預防 309
8.7.1 問題 309
8.7.2 解決方案 309
8.8 汽車工業和製造業 310
8.9 預測式維護 311
8.9.1 問題 311
8.9.2 解決方案 311
8.10 零售業 311
8.11 個性化零售實體店體驗 311
8.11.1 問題 311
8.11.2 解決方案 312
8.12 快餐式汽車餐廳自動化問題 313
8.12.1 問題 313
8.12.2 解決方案 313
8.13 結語 315
附錄A 公共數據集&深度學習模型倉庫 317



