文本數據挖掘與 Python 應用
劉金嶺 錢升華
- 出版商: 清華大學
- 出版日期: 2021-03-01
- 定價: $299
- 售價: 8.5 折 $254
- 語言: 簡體中文
- 頁數: 196
- 裝訂: 平裝
- ISBN: 7302557861
- ISBN-13: 9787302557869
-
相關分類:
Text-mining
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
大數據:語意分析整合篇
$220$198 -
Python 資料科學學習手冊 (Python Data Science Handbook: Essential Tools for Working with Data)$780$616 -
Python Flash Cards: Syntax, Concepts, and Examples$1,100$1,045 -
Python 技術者們 - 練功!老手帶路教你精通正宗 Python 程式 (The Quick Python Book, 3/e)$780$663 -
$210文本大數據情感分析 -
$1,176Natural Language Processing with Python and spaCy: A Practical Introduction -
$611文本機器學習 -
$301自然語言處理與計算語言學 -
Python 機器學習 (上), 3/e (Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 3/e)$620$484 -
$378自然語言處理從入門到實戰 -
使用 Python 搜刮網路資料的 12堂實習課$520$406 -
Python 機器學習 (下), 3/e (Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 3/e)$520$406 -
$505自然語言處理實戰 : 利用 Python 理解、分析和生成文本 -
Python 遷移學習$534$507 -
Python 文本分析, 2/e (Text Analytics with Python: A Practitioner's Guide to Natural Language Processing, 2/e)$774$735 -
$269Python 數據挖掘與機器學習 -
$479讓工作化繁為簡: 用 Python 實現辦公自動化 -
$834JavaScript 權威指南, 7/e -
Python 技術者們 -- 實踐!帶你一步一腳印由初學到精通, 2/e$650$514 -
Excel 2019 VBA 與巨集程式設計 -- 新手入門就靠這一本 (最新修訂版)(上)$600$468 -
Excel 2019 VBA 與巨集程式設計 -- 新手入門就靠這一本 (最新修訂版)(下)$500$390 -
別再 mnist 了:跨平台高平行 TensorFlow 2 精彩上陣$1,000$790 -
$426Python 電腦視覺和自然語言處理 開發機器人應用系統 (Artificial Vision and Language Processing for Robotics) -
$505從零構建知識圖譜 : 技術、方法與案例 -
文本挖掘與信息檢索概論$294$279
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
教材系統地介紹文本數據挖掘的相關概念,利用Python作為工具進行相關試驗,其內容主要包括:文本挖掘產生的背景及發展;文本挖掘的概念、文本模型表示、文本內容的預處理,包括分詞、去停用詞以及特徵抽取;文本相似度的概念等。介紹文本分類的概念及常用方法,如KNN算法、SVM算法等,並對分類結果進行評價;在介紹文本聚類聚類的概念時是,同樣介紹聚類常用算法,如K均值算法、層次聚類法、密度聚類法等,作為有文本分類、文本聚類的應用,最後給出了信息抽取、社會網絡中的實體關系抽取和事件抽取。
作者簡介
劉金嶺,教授,碩士生導師。
至2007年以來進行文本數據挖掘的研究,在專業核心期刊發表相關論文30多篇,EI檢索4篇,SCCSI檢索3篇。
在2010-2013年與江蘇移動公司合作進行垃圾短信處理研究,2009-2011完成市級科研課題“基於語義的垃圾短信分類器設計與實現(HAG09061)”。
目錄大綱
目錄
源碼下載
第1章緒論
1.1文本挖掘的研究背景及意義
1.2文本挖掘的國內外研究現狀
1.3文本挖掘概述
1.3.1文本挖掘的概念
1.3.2文本挖掘的任務
1.3.3文本挖掘與數據挖掘的聯系與區別
1.4文本挖掘的過程
1.5文本挖掘的主要研究領域
1.5.1文本特徵選擇
1.5.2文本結構分析
1.5.3文本摘要
1.5.4文本分類
1.5.5文本聚類
1.5.6文本關聯分析
1.5.7分佈分析與趨勢預測
1.6文本挖掘在制藥行業的應用案例
習題1
第2章文本切分及特徵詞選擇
2.1文本數據採集
2.1.1軟件接口對接方式
2.1.2開放數據庫方式
2.1.3基於底層數據交換的數據直接採集方式
2.1.4網絡爬蟲採集網頁數據
2.2語料庫與詞典簡介
2.2.1語料庫
2.2.2詞典
2.3文本切分
2.3.1句子切分
2.3.2詞匯切分
2.4文本特徵詞選擇
2.4.1文本特徵詞選擇概述
2.4.2常用的文本特徵詞選擇方法
2.5Python jieba分詞模塊及其用法
2.5.1jieba方法
2.5.2基於規則的中文分詞
2.5.3關鍵詞提取
習題2
第3章文本表示模型
3.1文本預處理
3.1.1原始數據處理
3.1.2文本預處理簡述
3.2向量空間模型
3.2.1向量空間模型的概念
3.2.2文本向量的相似度
3.2.3向量模型的Python實現
3.3概率模型
3.3.1概率模型概述
3.3.2概率建模方法
3.3.3文本信息檢索中的概率模型
3.3.4概率模型的Python實現
3.4概率主題模型
3.4.1概率主題模型概述
3.4.2PLSA概率主題模型
3.4.3LDA概率主題模型
3.4.4LDA概率主題模型的Python實現
習題3
第4章文本分類
4.1文本分類概述
4.1.1研究的意義
4.1.2國內外研究現狀與發展趨勢
4.1.3文本分類的定義
4.1.4文本分類流程
4.1.5文本分類預處理
4.2常用文本分類器
4.2.1KNN分類器
4.2.2SVM分類器
4.2.3Rocchio分類器
4.2.4樸素貝葉斯分類器
4.2.5決策樹分類器
4.3分類模型的性能評估
4.3.1分類評價方法
4.3.2分類性能評價指標
習題4
第5章文本聚類
5.1文本聚類概述
5.1.1研究的意義
5.1.2國內外研究現狀與發展趨勢
5.1.3文本聚類的定義
5.1.4文本聚類流程
5.1.5對聚類算法的性能要求
5.2文本聚類原理與方法
5.2.1基於劃分的方法
5.2.2基於層次的方法
5.2.3基於密度的方法
5.2.4基於網格的方法
5.2.5基於模型的方法
5.3文本聚類評估
5.3.1估計聚類趨勢
5.3.2確定簇數
5.3.3測定聚類質量
習題5
第6章文本關聯分析
6.1關聯規則挖掘概述
6.2文本關聯規則
6.2.1關聯規則的基本概念
6.2.2關聯規則分類
6.3關聯規則挖掘算法
6.3.1Apriori算法
6.3.2FPGrowth算法
習題6
第7章利用Python處理文本數據簡單應用
7.1情感分析
7.1.1情感分析原理
7.1.2算法設計
7.1.3算法實現
7.2自動生成關鍵詞和摘要
7.2.1TextRank算法
7.2.2生成關鍵詞和摘要
7.3使用SnowNLP進行商品評價
7.3.1SnowNLP庫簡介
7.3.2SnowNLP商品評價
7.4生成“詞雲”
7.4.1“詞雲”的概念
7.4.2Python“詞雲”圖的生成
習題7
參考文獻



