深度學習電腦視覺實戰 捲積神經網絡、Python 、TensorFlow和Kivy Practical Computer Vision Applications Using Deep Learning with CNNs: With Detailed Examples in Python Using TensorFlow and Kivy
Ahmed Fawzy Gad 林賜 譯
- 出版商: 清華大學
- 出版日期: 2020-09-01
- 定價: $588
- 售價: 8.5 折 $500
- 語言: 簡體中文
- 裝訂: 平裝
- ISBN: 7302558221
- ISBN-13: 9787302558224
-
相關分類:
DeepLearning、TensorFlow、Python
- 此書翻譯自: Practical Computer Vision Applications Using Deep Learning with CNNs: With Detailed Examples in Python Using TensorFlow and Kivy (Paperback)
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$330SystemVerilog 驗證 -
Deep Learning|用 Python 進行深度學習的基礎理論實作$580$458 -
$390深度學習框架 PyTorch : 入門與實踐 -
FFmpeg 從入門到精通$414$393 -
Practical Computer Vision Applications Using Deep Learning with CNNs: With Detailed Examples in Python Using TensorFlow and Kivy (Paperback)$3,370$3,202 -
Deep learning 深度學習必讀 - Keras 大神帶你用 Python 實作 (Deep Learning with Python)$1,000$790 -
$469視覺計算基礎:電腦視覺、圖形學和圖像處理的核心概念 (Introduction to Visual Computing: Core Concepts in Computer Vision, Graphics, and Image Processing) -
$755電腦視覺度量 從特徵描述到深度學習 -
Python 技術者們 - 練功!老手帶路教你精通正宗 Python 程式 (The Quick Python Book, 3/e)$780$663 -
科班出身的 AI人必修課:OpenCV 影像處理 使用 Python$780$616 -
深度學習 (Deep Learning)(繁體中文版)$1,200$948 -
強者用 PyTorch:實作史上最經典 AI 範例$690$545 -
機器學習的數學基礎 : AI、深度學習打底必讀$580$458 -
強化學習(RL):使用 PyTorch 徹底精通 (有些許瑕疵,不影響閱讀)$780$616 -
$602機器視覺與機器學習 — 算法原理、框架應用與代碼實現 -
$454OpenCV 4 快速入門 -
FPGA 數字圖像採集與處理 — 從理論知識、模擬驗證到板級調試的實例精講$414$393 -
Deep Learning on Windows: Building Deep Learning Computer Vision Systems on Microsoft Windows$2,230$2,119 -
深度強化式學習 (Deep Reinforcement Learning in Action)$1,000$790 -
算法競賽入門經典 — 訓練指南 (升級版)$708$673 -
$559算法競賽入門經典 — 算法實現 -
$673圖深度學習 -
詳解 FPGA:人工智能時代的驅動引擎$354$336 -
深度學習的 16 堂課:CNN + RNN + GAN + DQN + DRL, 看得懂、學得會、做得出! (Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence)$620$489 -
Python 與物聯網程式開發終極實戰寶典 (Practical Python Programming for IoT)$620$490
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
主要內容
● 理解ANN和CNN的工作機制
● 使用Python從頭創建計算機視覺應用和CNN
● 使用TensorFlow從概念到生產學習深度學習項目
● 與Kivy配合使用NumPy構建跨平臺的數據科學應用
作者簡介
Ahmed Fawzy Gad
是一名助教,來自埃及,2015年在埃及梅努菲亞大學計算機與信息學院獲得信息技術榮譽理學學士學位,2018年獲得碩士學位。
Ahmed對深度學習、機器學習、計算機視覺和Python饒有興趣。
他曾擔任機器學習項目的軟件工程師和顧問。
通過分享著作並在YouTube頻道上錄製教程,為數據科學界添磚加瓦是Ahmed的奮鬥目標。
Ahmed發表了多篇研究論文,撰寫了
TensorFlow: A Guide to Build Artificial Neural Networks Using Python (Lambert,2017)一書。
Ahmed一直希望在其所感興趣的領域與其他專家分享經驗。
目錄大綱
目錄
第1章 計算機視覺識別 1
1.1 圖像識別步驟 2
1.2 特徵提取 3
1.2.1 顏色直方圖 4
1.2.2 GLCM 9
1.2.3 HOG 14
1.2.4 LBP 28
1.3 特徵選擇和縮減 30
1.3.1 過濾器方法 30
1.3.2 包裝器方法 31
1.3.3 嵌入式方法 32
1.3.4 正則化 33
第2章 人工神經網絡 35
2.1 人工神經網絡簡介 36
2.1.1 線性模型是人工神經網絡的基礎 36
2.1.2 繪製人工神經網絡 40
2.2 調整學習率來訓練ANN 43
2.2.1 過濾器示例 44
2.2.2 學習率 47
2.2.3 測試網絡 49
2.3 使用向後傳播優化權重 49
2.3.1 無隱藏層神經網絡的向後傳播 49
2.3.2 權重更新公式 52
2.3.3 為什麼向後傳播算法很重要 53
2.3.4 前向傳遞與後向傳遞 53
2.3.5 具有隱藏層的神經網絡的向後傳播 59
2.4 過擬合 68
2.4.1 基於回歸示例理解正則化 70
2.4.2 模型容量/複雜性 72
2.4.3 L1正則化 74
2.5 設計ANN 76
2.5.1 示例1:無隱藏層的ANN 76
2.5.2 示例2:具有單個隱藏層的ANN 79
第3章 使用具有工程化特徵的人工神經網絡進行識別 83
3.1 Fruits 360數據集特徵挖掘 83
3.1.1 特徵挖掘 83
3.1.2 特徵縮減 89
3.1.3 使用ANN進行過濾 91
3.2 ANN實現 93
3.3 工程化特徵的局限性 99
3.4 工程化特徵並未終結 100
第4章 人工神經網絡的優化 101
4.1 優化簡介 101
4.2 GA 104
4.2.1 選擇最佳親本 106
4.2.2 變化算子 107
4.2.3 示例的Python實現 109
4.3 NSGA-II 119
4.3.1 NSGA-II步驟 119
4.3.2 支配度 121
4.3.3 擁擠距離 126
4.3.4 競賽選擇 128
4.3.5 交叉 129
4.3.6 突變 129
4.4 使用GA優化ANN 130
第5章 捲積神經網絡 143
5.1 從人工神經網絡到捲積神經網絡 143
5.1.1 深度學習背後的直覺 144
5.1.2 捲積的推導 147
5.1.3 設計CNN 156
5.1.4 池化操作 159
5.1.5 捲積操作示例 160
5.1.6 最大池化操作示例 162
5.2 使用NumPy從頭開始構建CNN 163
5.2.1 讀取輸入圖像 163
5.2.2 準備過濾器 164
5.2.3 捲積層 165
5.2.4 ReLU層 170
5.2.5 最大池化層 171
5.2.6 堆疊層 172
5.2.7 完整代碼 174
第6章 TensorFlow在圖像識別中的應用 183
6.1 TF簡介 183
6.1.1 張量 184
6.1.2 TF Core 184
6.1.3 數據流圖 185
6.1.4 使用TB的圖可視化 195
6.1.5 線性模型 197
6.2 構建FFNN 203
6.2.1 線性分類 204
6.2.2 非線性分類 211
6.3 使用CNN識別CIFAR10 216
6.3.1 準備訓練數據 216
6.3.2 構建CNN 218
6.3.3 訓練CNN 222
6.3.4 保存已訓練模型 226
6.3.5 構建和訓練CNN的完整代碼 226
6.3.6 準備測試數據 236
6.3.7 測試已訓練的CNN模型 237
第7章 部署預訓練模型 239
7.1 應用概述 239
7.2 Flask介紹 240
7.2.1 route()裝飾器 241
7.2.2 add_rule_url方法 243
7.2.3 變量規則 243
7.2.4 端點 245
7.2.5 HTML表單 246
7.2.6 上傳文件 248
7.2.7 Flask應用內的HTML 250
7.2.8 靜態文件 254
7.3 部署使用Fruits 360數據集訓練過的模型 256
7.4 部署使用CIFAR10數據集訓練過的模型 263
第8章 跨平臺的數據科學應用 277
8.1 Kivy簡介 278
8.1.1 使用BoxLayout的基本應用 278
8.1.2 Kivy應用的生命週期 279
8.1.3 部件尺寸 282
8.1.4 網格佈局 284
8.1.5 更多部件 285
8.1.6 部件樹 287
8.1.7 處理事件 289
8.1.8 KV語言 291
8.2 P4A 295
8.2.1 安裝Buildozer 295
8.2.2 準備buildozer.spec文件 296
8.2.3 使用Buildozer構建Android應用 298
8.3 Android上的圖像識別 300
8.4 Android上的CNN 305
附錄A 使用pip安裝程序安裝自製項目包 313



